Каталог

Помощь

Корзина

Технологические энергосистемы предприятий - Курс лекций, Ижевск, 2012

Оригинальный документ?

 

 

 

 

 

 

Краткий конспект лекций

по дисциплине

 

 

«ТЕХНОЛОГИЧЕСКИЕ ЭНЕРГОСИСТЕМЫ

ПРЕДПРИЯТИЙ»

 

 

 

 

 

 

 

 

Составитель:                                   доцент Кочетков Н.П.

 

 

 

 

 

 

Ижевск 2012

 

СОДЕРЖАНИЕ 

Лекция 1. Общие сведения об энергосистемах предприятий

3

Лекция 2. Системы водоснабжения. Назначение, состав, виды систем водоснабжения

 

7

Лекция 3. Системы  технического водоснабжения

промышленных предприятий (СТВС ПП)

 

11

Лекция 4. СТВС ПП (продолжение)

18

Лекция 5. Системы воздухоснабжения промышленных

предприятий

 

23

Лекция 6. Производство и потребление сжатого воздуха

на промышленных предприятиях

 

26

Лекция 7. Системы теплоснабжения

29

Лекция 8. Источники и потребители тепловой энергии

39

Лекция 9. Системы электроснабжения

48

Лекция 10. Радиальные и магистральные схемы

электроснабжения

 

51

Лекция 11. Системы освещения, основные понятия.

Источники излучения

 

57

Лекция 12. Осветительные приборы. Основные методы

светотехнического расчета освещения

 

62

Лекция 13. Проектирование и расчет осветительных сетей

69

Лекция 14. Системы топливоснабжения. Топливоснабжение при твердом и при жидком топливе

 

77

Лекция 15. Топливоснабжение при газообразном топливе.

Классификация газопроводов

 

84

Лекция 16. Системы холодоснабжения. Потребители

искусственного холода Способы производства

искусственного холода

 

 

88

Лекция 17. Виды систем охлаждения. Способы отвода теплоты

от потребителей холода

 

90

Лекция 18. Системы обеспечения предприятий

продуктами разделения воздуха

96

Лекция 1.

Общие сведения об энергосистемах предприятий

 

Энергоснабжение - это обеспечение потребителя всеми видами энергии и энергоносителей, необходимыми для его нормальной работы. Основными потребителями всех видов энергии и энергоносителей являются предприятия, а непременная часть любого предприятия – его энергохозяйство. Оно представляет собой совокупность генерирующих, преобразующих, передающих и потребляющих энергетических установок, посредством которых осуществляется снабжение предприятия всеми необходимыми ему видами энергии и использование её в процессе производства. Энергохозяйство предприятия является не только вспомогательным и обслуживающим производством, но и основой, обеспечивающей нормальное функционирование предприятия.

Для большинства предприятий основными видами энергоснабжения являются электро-, тепло- и водоснабжение. Для крупных предприятий, имеющих собственные котельные или электростанции, необходимым является также топливоснабжение. В зависимости от применяемых технологий предприятия могут также нуждаться в снабжении их воздухом, холодом и продуктами разделения воздуха.

Устройства и установки, предназначенные для снабжения предприятия всеми необходимыми ему видами энергии и энергоносителей, образуют систему энергоснабжения предприятия.

Энергоснабжение делится на внешнее и внутреннее. Под внешним энергоснабжением понимается снабжение потребителя от внешних источников, под внутренним - от внутренних общезаводских или цеховых источников энергии. 

Внешнее энергоснабжение обычно включает в себя электроснабжение, водоснабжение и топливоснабжение, а для малых и мелких предприятий и теплоснабжение. 

Внутреннее энергоснабжение может включать в себя воздухоснабжение, кислородо- и азотоснабжение, холодоснабжение, а на крупных и средних предприятиях также электро-, тепло- и водоснабжение.

В зависимости от того, как осуществляется электро- и теплоснабжение, энергоснабжение принято делить на централизованное, местное (автономное), смешанное, комбинированное, раздельное.

В случае, когда снабжение электрической и тепловой энергией осуществляется только от внешних источников, энергоснабжение принято называть централизованным. Как правило, централизованное энергоснабжение характерно для средних, малых и мелких предприятий. На таких предприятиях топливоснабжение вообще может отсутствовать, а в случае, когда оно осуществляется, выполняется как газоснабжение для бытовых нужд. При питании от местных источников электрической и тепловой энергии принято говорить о местном (автономном) энергоснабжении. Это определение является несколько условным, так как топливоснабжение при этом осуществляется от внешних источников. Автономное энергоснабжение применяется в тех случаях, когда предприятие сооружается вдали от мест, по которым проложены тепловые и электрические сети.

В случае, когда предприятие получает от одного внешнего источника несколько видов энергии, централизованное энергоснабжение называют комбинированным.

Если электрическую и тепловую энергию предприятие получает от разных внешних источников (электрическую от сетей энергосистемы, а тепловую - от районной котельной), такое энергоснабжение называют раздельным.

Если же от внешнего источника централизованно предприятие получает только один вид энергии (например, электроэнергию), а другой вид (например, тепловую) вырабатывает само, говорят о смешанном энергоснабжении. Смешанное энергоснабжение, как правило, характерно для предприятий средней мощности.

Основными источниками электроснабжения являются районные энергосистемы, к линиям и подстанциям которых присоединяются подстанции потребителей. Кроме того, на некоторых предприятиях для питания потребителей дополнительно вырабатывается собственная электроэнергия - на заводских теплоэлектроцентралях (ТЭЦ) или станциях других видов, в том числе на различных утилизационных электростанциях, где источниками энергии являются ВЭР - прежде всего теплота уходящих газов промышленных печей, отработанные топливные газы технологических процессов и пр.

Источниками водоснабжения крупных предприятий являются сооружения внешнего водозабора, включающие береговые или артезианские насосные станции, насосные станции первого подъема. К потребителям вода подается с помощью насосных станций второго и третьего подъемов. Для небольших предприятий источником водоснабжения является городской водопровод.

Теплоснабжение потребителей (снабжение горячей водой и паром) может производиться от ТЭЦ - местной  или  находящейся  в  ведении районной энергосистемы, от местных и районных котельных. При теплоснабжении от собственных ТЭЦ и котельных тепловая энергия вырабатывается, как правило, с использованием ВЭР.

Топливо, поступающее на предприятие, может быть твердым, жидким или газообразным.

Твердое топливо (уголь) на предприятия доставляется преимущественно железнодорожным транспортом. Груженые полувагоны взвешиваются на железнодорожных весах и подаются в приемно-разгрузочное устройство. В зимнее время они предварительно проходят размораживание. После разгрузки уголь поступает на узел пересыпки, откуда транспортными механизмами подается на склад.

Из жидких топлив на предприятиях в основном используют мазут, доставка которого обычно осуществляется железнодорожным транспортом в цистернах. Разогретый мазут сливается из цистерн и после фильтрации и дополнительного подогрева попадает в резервуары основного хранения вместимостью до 50000 м3.

Основным видом топливных газов, используемых на предприятиях, является природный, поступающий на предприятия по магистральным трубопроводам от различных месторождений. К предприятию и отдельным цехам природный газ подводится через газорегуляторные пункты (ГРП) или газорегулирующие установки (ГРУ). На некоторых предприятиях, например металлургических, наряду с природным газом широко используются доменный и коксовый газы, являющиеся продуктами (отходами) доменного и коксохимического производства. В целях экономии расхода природного газа и для повышения калорийности газов, являющихся продуктами технологического производства, на газосмесительных станциях (ГСС) газы с различными свойствами смешивают и затем полученную смесь используют для сжигания.

Источниками сжатого воздуха на промпредприятиях являются различные компрессоры, воздуходувки и вентиляторы. Эти механизмы могут устанавливаться непосредственно в технологических цехах или на специальных компрессорных станциях.

В качестве источников холода на предприятиях применяются парокомпрессорные холодильные машины с центробежными и винтовыми компрессорами, а также абсорбционные холодильные машины, которые используют в качестве источников энергии теплоту технологических процессов, ВЭР или обратную воду ТЭЦ. Производство искусственного холода может быть централизованным и децентрализованным. Централизованный способ применяется при больших нагрузках, сосредоточенных на сравнительно небольшой территории. При небольших нагрузках и разбросанности объектов охлаждения, а также при непосредственном включении элементов холодильного цикла в схему основного производства целесообразно использование децентрализованного способа. Основными потребителями искусственного холода являются нефтяная, газовая, химическая промышленность, машиностроение и металлургия, а также пищевая промышленность, сельское хозяйство, торговля и общественное питание.

Источниками кислорода и азота на крупных промышленных предприятиях являются кислородные станции с блоками разделения воздуха, компрессорами и холодильными машинами. На этих же станциях в случае необходимости могут быть получены и другие продукты разделения воздуха -инертные газы, аргон, неон, криптон, ксенон и гелий.

Основными требованиями, предъявляемыми к любым системам энергоснабжения, являются:

1. Обеспечение необходимой надежности энергоснабжения.  Требования, предъявляемые к надежности, определяются последствиями перерыва в подаче энергии. В ряде случаев они формулируются в действующих правилах устройства, строительных нормах, руководящих документах (РД) и т.п. Так, например, требования к надежности систем электроснабжения сформулированы в Правилах устройства электроустановок (ПУЭ).

2. Обеспечение необходимого качества энергии, топлива или энергоносителей. Это требование определяется влиянием, оказываемым качеством энергии, топлива или энергоносителей на работу как их потребителей, так и самих систем энергоснабжения. Для некоторых видов энергии разработаны ГОСТы, регламентирующие их допустимое качество. Так, например, ГОСТ 13109-97 нормирует качество электрической энергии в системах электроснабжения общего назначения.

3. Простота, удобство и безопасность монтажа и эксплуатации. Выполнение этого требования обеспечивается широким внедрением комплектных установок и элементов заводского изготовления. В системе электроснабжения, например, к таким установкам относятся камеры комплектных устройств 6-10 кВ (КРУ), комплектные трансформаторные подстанции (КТП), комплектные конденсаторные установки (ККУ), типовые элементы токопроводов напряжением до и выше 1000 В и т.п.

4. Возможность роста энергетических нагрузок и энергопотребления в течение ряда (семи - десяти) лет без капитальной реконструкции систем энергоснабжения. Выполнение этого требования определяется  правильностью определения расчетных нагрузок соответствующих систем энергоснабжения, отнесенных к концу указанного периода, и выбором соответствующих проектных решений. Так, например, применение магистральных и распределительных шинопроводов в цехах промпредприятий позволяет без реконструкции цеховых электрических сетей 380/220 В перемещать электроприемники по территории цеха и заменять их на более мощные.

5. Обеспечение экономичности энергоснабжения. Выполнение этого требования подразумевает принятие таких технических и организационных решений, которые обеспечивали бы наименьшие из возможных затрат на энергоснабжение при условии обязательного выполнения всех предыдущих требований.

 

 Лекция 2.

Системы водоснабжения. Назначение, состав, виды систем водоснабжения

 

Системой водоснабжения называют комплекс инженерных сооружений, обеспечивающих водой различных потребителей.

Системы водоснабжения классифицируются:

1) по виду обслуживаемого объекта (городские, сельскохозяйственные, промышленные, железнодорожные);

2) по назначению (хозяйственно-питьевые, производственные, противопожарные);

3) по виду источника (с забором воды из поверхностного источника, с забором воды из подземного источника);

4) по способу подачи воды (механизированные с использованием насосов и водоподъемников, самотечные);

5) по способу регулирования воды (башенные, безбашенные);

6) по кратности использования воды (прямоточные с однократным использованием воды, оборотные с многократным использованием воды);

7) по общему назначению (централизованные системы, обеспечивающие водой большие комплексы объектов коммунального и производственного назначения; локальные системы, снабжающие водой отдельные здания или небольшую их группу; групповые системы, снабжающие водой несколько крупных районов, в которые входят промышленные комплексы, сельхозпредприятия, населенные пункты).

Если система водоснабжения одновременно выполняет несколько функций (хозяйственно-питьевые, производственные, противопожарные), её называют комбинированной. Сельскохозяйственные системы чаще всего комбинированные.

Сельскохозяйственное водоснабжение может осуществляться по нескольким схемам. Схема водоснабжения прежде всего зависит от вида источника.

На рисунке 1 показана наиболее полная схема водоснабжения с поверхностным источником 1, вода из которого поступает в береговой колодец 2, оттуда насосной станцией первого подъема 3 перекачивается на очистную водопроводную станцию 4. Пройдя очистку, вода собирается в резервуаре чистой воды 5, оттуда насосной станцией второго подъема 6 по водоводу 7 поступает водопотребителю 9.

В систему водоснабжения включена водонапорная башня 8. 

Изображение 1

Рисунок 1. Полная схема водоснабжения с поверхностным источником

 

Схема водоснабжения из подземного источника показана на рисунке 2. Вода из колодца 1 насосной станцией первого подъема 2 перекачивается в резервуар чистой воды 3. Насосная станция второго подъема 4 подает воду по водоводу 5 потребителю 6 и водонапорную башню 7.

 

Изображение 2

Рисунок 2. Схема водоснабжения из подземного источника

 

В сельском хозяйстве часто сооружаются напорные безбашенные системы водоснабжения. Схема такой системы водоснабжения приведена на рисунке 3. Из подземного источника 1 вода насосом 2 перекачивается в воздушно-водяной котел 3, откуда за счет давления сжатого воздуха по водоводу 4 подается к потребителю 5.

 

Изображение 3

Рисунок 3. Схема напорные безбашенной системы водоснабжения

 

 

На рисунке 4 представлена схема водопровода с забором воды из родника. Родниковая вода, собранная каптажной камерой 1, самотеком поступает через регулирующий резервуар 2 по водоводу 3 к потребителю 4. Подобные схемы водоснабжения применяются в горной местности.

 

Изображение 4

Рисунок 4.  Схема водопровода с забором воды из родника


Водопроводная сеть представляет собой совокупность трубопроводов, по которым вода транспортируется потребителям. Основное назначение водопроводной сети – подавать потребителям воду в требуемом количестве, хорошего качества и с необходимым напором. Обычно водопроводная система наряду с подачей воды для хозяйственных нужд обеспечивает ещё и нужды пожаротушения.

Проектируют водопроводную сеть с учетом совместной работы насосных станций, водонапорной башни и других элементов системы водоснабжения.

Трассировка водопроводной сети заключается в придании ей определенного геометрического начертания. Она зависит от: конфигурации населенного пункта, расположения улиц, кварталов, общественных и производственных зданий, расположения источника водоснабжения и многих других факторов.

По начертанию в плане различают два основных вида сетей – тупиковые и кольцевые.

Примерный вид схемы тупиковой и кольцевой водопроводной сети представлен на рисунке 5, где:

а – схема тупиковой водопроводной сети,

б – схема кольцевой водопроводной сети,

Н.С. – насосная станция,

Б – водонапорная башня.

Вода в населенных пунктах расходуется:

населением для индивидуальных нужд,

коммунально-бытовыми учреждениями,

промышленными предприятиями,

на обслуживание животных и содержание различных машин и механизмов.

Всех потребителей населенного пункта можно условно сгруппировать в три сектора:

1) коммунальный сектор (население, проживающее в домах различной степени благоустройства; школы; больницы; бани; полив газонов и цветников; скот и птица в личном пользовании);

2) животноводческий сектор (различные животноводческие фермы мясного и молочного направления, птицефермы и др.);

3) производственный сектор (предприятия по переработке сельскохозяйственной продукции, гаражи, мастерские и др.).

Изображение 5Изображение 6

Рисунок 5. Примерный вид схемы тупиковой и кольцевой водопроводной сети


Лекция 3.

Системы  технического водоснабжения промышленных предприятий (СТВС ПП)

 

Назначение СТВСПП 

Техническая вода является одним из наиболее распространенных видов энергоносителей. Она используется в технологических процессах и в хозяйственно-бытовых целях практически на всех предприятиях. Расходы технической воды на производственные нужды сильно колеблются в зависимости от назначения и мощности предприятия, а также характера технологически процессов.

Например, для производства 1т чугуна расходуется 1200-1600 м3/час воды, 1т меди 760-800 м3/час, а для производства редкоземельных металлов – 2000-2500 м3/час.

Вода на промышленном предприятии используется по трем основным направлениям:

1. Производственно-техническое водоснабжение. Вода расходуется на:

- охлаждение технологических аппаратов и установок для обеспечения необходимого температурного уровня производственных процессов;

- для выработки пара в паровых котлах, системах испарительного охлаждения и в утилизационных установках;

- на промывку, мокрую очитку различных материалов, деталей, газов, выбросов и т.д.;

- на гидротранспорт, гидроудаление отходов, обогащение материалов;

- для приготовления растворов, электролитов и других смесей.

2. Хозяйственно-питьевое водоснабжение. Вода расходуется на:

- приготовление пищи, организации питьевого режима, мытье посуды и т.д.;

- обеспечение работы душевых и умывальников;

- на хозяйственные нужды в прачечных, влажную уборку помещений и т.д.;

- на полив проездов, тротуаров и зеленых насаждений.

 

3. Пожарное водоснабжение. Вода расходуется на:

- тушение пожаров и возгораний;

- для организации работы систем автоматического и полуавтоматического тушения пожаров;

- для резервного хранения в хранилищах и резервуарах.

Требования, предъявляемые к качеству воды для трех основных направлений применения ее на промышленных предприятиях существенно различаются.

Для потребителей первой группы требования, предъявляемые к качеству воды (степень жесткости, мутности, наличие минеральных солей и т.д.) определяются условиями технологического процесса.

Наиболее жесткие условия к качеству воды предъявляются потребителями второй группы.

Самые низкие требования к качеству воды предъявляются потребителями системы пожарного водоснабжения. Допустимы запах, мутность, взвеси и т.п.

Исходя из основных показателей природных источников, затрат на подготовку и транспортировку воды и требований, предъявляемых к воде потребителями большинство предприятий используют для систем водоснабжения воду поверхностных источников с простейшей предварительной очисткой (фильтр на всасывании) или без очистки. В самом простом варианте схема водоснабжения предприятия может выглядеть следующим образом: 

Схема водоснабжения предприятия

Рисунок 1 - Схема водоснабжения предприятия


Уточненная схема водоснабжения предприятия

Рисунок 2 - Уточненная схема водоснабжения предприятия


В связи с возможностью резкого ухудшения экологической обстановки в регионе, вызванной развитием и модернизацией промышленных предприятий их очистные сооружения должны развиваться вместе с ростом и развитием предприятий. На первом этапе модернизации системы  технического водоснабжения промышленных предприятий дополняются несколькими станциями очистки СО.

  

Изображение 9

 

Следующим этапом модернизации системы  технического водоснабжения промышленных предприятий является организация ее работы по замкнутой схеме.

Замкнутая схема водоснабжения предприятия

Рисунок 3 - Замкнутая схема водоснабжения предприятия

 

Состав систем технического водоснабжения промышленного предприятия 

Системы технического водоснабжения – это комплекс сооружений, предназначенный для забора воды из природных источников, повышение ее качества до необходимого уровня, транспортировки потребителю, обеспечение у потребителей необходимого давления, а также для очистки сточных и сбрасываемых вод. 

Состав схемы водоснабжения промышленного предприятия

 Рисунок 4 - Состав схемы водоснабжения промышленного предприятия

В состав схемы водоснабжения могут входить следующие элементы:

1 - Водозаборное сооружение (предназначено для отбора воды из природного источника.

2 - Насосная станция первого подъема (предназначена для подачи воды в пруд-отстойник или непосредственно в систему водоснабжения).

3 - Пруд-отстойник (служит для предварительной очистки воды; в случае необходимости дополняется установками для осветления воды и т.д.).

4 - Резервуар чистой воды (предназначен для хранения определенного количества воды и создания напора у ряда потребителей в случае отключения системы).

5 - Пруд-накопитель (предназначен для накопления и хранения воды).

6 - Насосная станция второго подъема (предназначена для создания дополнительного напора).

7 - Насосная станция третьего подъема (предназначена для подъема воды в бак-накопитель водонапорной башни).

8 - Водонапорная башня (назначение – обеспечение необходимого напора у потребителей).

9 - Установка ХВО (химводоочистки).

10 - Водоводы промышленного предприятия.

Кроме того, в состав  системы водоснабжения могут входить:

- водопроводы и транспортные сети, предназначенные для передачи воды на большие расстояния;

- запорная и регулирующая аппаратура, предназначенная для обеспечения переключений в сети, регулирования давлений и проведения измерений параметров;

- аккумулирующие сооружения (резервуары, емкости, аккумулирующие баки и пруды-накопители).

 

Расположение элементов системы водоснабжения на схеме, варианты их конструктивного исполнения, а также мощность зависят от характеристик предприятия и природного источника. 

Идеальным вариантом организации водоснабжения промышленного предприятия является внедрение бессточных схем (работа по замкнутому циклу) с минимальным потреблением внешних ресурсов и максимальным использованием ВЭРов и отходов производства.

 

Прямоточные системы водоснабжения и их характеристики

 

Прямоточные схемы СТВСПП могут быть выполнены по схеме, изображенной на рис. 1, где:

1–Источник.  2–Водозаборное сооружение.  3.1–Насосная станция первого подъема.  3.2–Насосная станция второго подъема.  4.1–Очистные сооружения природной воды.  4.2–Очистные сооружения сточных вод ПП.  5–Резервуар чистой воды.  6–Водоводы.  7–Напорная регулирующая емкость (водонапорная башня).  8–Водонапорная сеть ПП.  9.1-9.4–Потребители воды на предприятии.  10–Сеть для продувок и сброса отработанной воды.  11–Транспортная сеть к устройствам охлаждения и очистки.  12–Устройства охлаждения технической воды.  13–Линия сбросных вод ПП.  14–Ливневая канализация. 

Прямоточная система водоснабжения

 Рисунок 1 - Прямоточная система водоснабжения

Вода из источника 1 через водозаборное сооружение 2 и насосную станцию 3.1 поступает в очистные сооружения 4.1, где осуществляется предварительная очистка воды до уровня, соответствующего технологическому процессу. Далее вода собирается в резервуаре чистой воды 5, конструкция и размеры которого определяются суммарной мощностью водопотребления предприятия (бак, башня, пруд и т.д.). Другое назначение РЧВ заключается в том, что с его помощью сглаживаются пиковые нагрузки в период наибольшего водопотребления. Далее по водоводам 6 с помощью насосной станции второго подъема 3.2 вода поступает в водопроводную сеть предприятия 8. Направление перетоков воды в схеме и коммутационные возможности сети зависят от технологии производства и могут быть различны для различных предприятий. По напорной сети предприятия вода направляется потребителям 9.1-9.4. Для поддержания необходимого напора и давления в сети служит водонапорная башня 7. Отработанная вода и ливневые воды, проходя через очистные сооружения 4.2 по сбросной линии 13 сбрасываются в источник.

СТВС реального предприятия малой и средней мощности, выполненная по прямоточной схеме может быть дополнена другими элементами, исходя из условий технологического процесса (установки ХВО, напорные, насосные станции, пруды-отстойники т.д.).

При построении СТВС ПП по прямоточной схеме учитываются следующие соображения:

Мощность природного источника. Она должна быть достаточной для сохранения экологической обстановки в регионе.

Удаленность предприятия от источника воды. С увеличением расстояния растут дополнительные расходы на транспортировку.

Степень предварительной очистки воды и затраты на содержание очистных установок определяется условиями технологического процесса. С точки зрения экологической безопасности прямоточные схемы являются наиболее “грязными”.

 Характеристики и особенности СТВС ПП  с повторным использованием воды 

Система водоснабжения с повторным использованием воды

 Рисунок 1 - Система водоснабжения с повторным использованием воды


Схема с повторным использованием воды применяется в том случае, если в состав предприятия входит хотя бы один потребитель, удовлетворяющий двум условиям:

Суммарное водопотребление этого потребителя равно или превышает потребление воды всех оставшихся потребителей.

Качество сбросных вод крупного потребителя удовлетворяет технологическим требованиям оставшихся.

Структура схемы при этом принципиально не изменяется, но из природного источника забирается количество воды, необходимое только для обеспечения водопотребления потребителя 9.1. Потребители 9.2–9.4 используют сбросную воду потребителя 9.1. Схема в сравнении с предыдущей имеет следующие преимущества:

Уменьшение количества воды, забираемой из природного источника.

Снижение количества сбрасываемых сточных вод.

Снижение стоимости отдельных элементов схемы обусловлено снижением их мощности.

Стоимость эксплуатационных расходов у данной схемы меньше, чем у прямоточной.

Недостатками данной схемы являются:

Узкий диапазон применения. Далеко не все производства предприятия позволяют использовать сточные воды.

Необходимость наличия разветвленных сетей.

Внедрение подобных схем на предприятиях в предельном случае дает возможность уменьшения водопотребления в два раза.

 

Лекция 4.

СТВС ПП (продолжение)

Оборотная схема технического водоснабжения

 

Оборотная схема технического водоснабжения

 Рисунок 2 - Оборотная схема технического водоснабжения


Оборотные схемы применяются на предприятиях с развитым производством. Возможность их использования обусловлена тем, что от 70 до 80% воды, проходящей через технологические установки только нагревается в системах охлаждения и может быть использована повторно.

Схема работает следующим образом:

После насосной станции второго подъема 3.2 вода через водоводы 6 направляется в водопроводную сеть предприятия 8 и через нее к потребителям 9.1-9.4. 

Далее вода направляется к очистным сооружениям 4.2 и сбрасывается в резервуар очищенной воды 5. Оттуда после насосной станции третьего уровня 3.3 вода поступает в водоем-охладитель 12. 

В качестве охладителя служит вода окружающей температуры, поступающей из пруда. Если сбросные воды 9.1-9.4 не загрязнены, из схемы убирается 4.2. Схема является почти полностью замкнутой. Из природного источника забирается только то количество воды, которое компенсирует расходы на утечки, испарения, продувки и сброс сильно загрязненных вод. Конструкция охладителя 12 и его мощность зависит от мощности предприятия в целом. Это могут быть охладительные емкости большого объема, пруды-охладители, водоемы специальной конструкции. Сброс воды через систему 13 осуществляется в целях проверки и поддержания солевого баланса.

Достоинства:

Существенное сокращение объема воды, забираемой из природного источника в сравнении с двумя предыдущими схемами.

Уменьшение расходов на строительство и эксплуатацию системы.

Высокий уровень очистки сбросных вод.

Недостатки:

Ограниченность применения: для крупных и средних предприятий.

Необходимость наличия разветвленных сетей.

  

Бессточные системы технического водоснабжения

Бессточные системы технического водоснабжения

 Рисунок 1 - Бессточные системы технического водоснабжения

 

Бессточные системы водоснабжения являются наиболее современными и экологически чистыми типами систем. Они могут быть построены путем развития, объединения конструкций существующих систем предприятия.

Доработка заключается в частичном изменении конфигурации сети и включению в систему установок для очистки или утилизации сточных вод и шламов.

Для организации правильной работы бессточной системы все потребители делятся на три группы:

1) потребители “грязного” цикла (охлаждение металлорежущих станков, промывка деталей и т.д.)

2) потребители “чистого” цикла (ТЭЦ, компрессорные установки и холодильные установки и  т.д.)

3) потребители “безвозвратного” цикла (установки для мокрого тушения кокса, установки гидро–обеспыливания и д.р., качество воды для которых не имеет значение)

Принцип работы бессточных систем заключается в следующем: после забора воды из природного источника и прохождении через водозаборное устройство 2, насосные станции 3 и очистные сооружения природной воды 4.1, вода поступает в трубопроводы чистой воды 8, с помощью которой снабжаются основные потребители “чистого” цикла. Часть воды поступает на ХВО 14 и направляется к потребителям, предъявляющим повышенные требования к воде. Сюда же поступают сточные воды потребителей “чистого” цикла. Другая часть сточных вод, не прошедшая очистку, поступает к потребителям “грязного” цикла, при этом обязательным условием является то, что суммарная мощность сбрасываемых вод 13 достаточна для удовлетворения нужд группы потребителей 15. Потребители “безвозвратного” цикла выделяют в группу 16 и обеспечиваются водой через безвозвратную сеть 18. остаточные нерастворимые элементы накапливаются в шламовом хозяйстве 17.

Положительные моменты:

высокая экологическая чистота системы;

практическая реализация внедрения в производство принципов сберегающих технологий.

Недостатки:

высокая стоимость сооружений;

большие эксплуатационные расходы.

 

Характеристики основных сооружений СТВСПП

 

В состав типовых схем систем водоснабжения входят:

        водозаборные сооружения;

        насосные станции;

        очистные сооружения;

        охлаждающие устройства;

        накопительные резервуары;

        запорнорегулирующая аппаратура;

 

Водозаборные сооружения

       

По способу забора воды из природного источника различают поверхностные и глубинный водозабор. Поверхностный водозабор разделяется на: береговые, островные, плавучие, рельефные. Глубинный водозабор делится на: трубчатые, колодцы, артезианские скважины.

Преимущества глубинного водозабора:

не зависит от уровня колебаний воды в сезоны;

не требуют дополнительных расходов на установку защитных сооружений (ледоход, лесосплав и д.т.).

Недостатки:

дороговизна сооружений;

повышенное содержание минеральных солей.

Системы водоснабжения средних и крупных предприятий чаще всего строится по схеме с поверхностным водозабором. Мощность элементов входящих в схему, их геометрические размеры и производительность определяется суммарным водопотреблением и целым рядом производственных факторов.

 

Насосные станции

 

Назначение насосных станций — обеспечение воды и напора у потребителей. Насосные станции делятся на станции первого, второго и т.д. подъемов, станции перекачки, циркуляционные станции.

Состав (комплектность) насосной станции зависит от мощности, конструктивных особенностей, категорийности потребителей. При этом к потребителям первой категории относят системы пожаротушения и сети хозяйственно–питьевого назначения. К потребителям второй категории относят технические здания и сооружения, обеспечивающие нормальное прохождение технического процесса.

Насосные станции классифицируются:

по назначению;

по размещению оборудования (подземные, углубленные, надземные);

по типу насосного оборудования (поршневые, лопастные и т.д.);

по типу привода (от электричества, двигателя внутреннего сгорания, турбовинтовые);

по компоновке (однорядные, двухрядные, многорядные);

по характеру управления (ручное, автоматическое, дистанционное и их вариации).

 

Очистные сооружения

 

Задачей очистных сооружений на входе предприятия является удаление взвешенных частиц содержащихся в воде или ее осветление до состояния, удовлетворяющего условиям технологического процесса. Иногда необходимо умягчение воды, в целом ряде случаев, система питьевого водоснабжения, необходимо дополнительное удаление бактерий, обеззараживание, хлорирование и т.д.

        В состав очистных сооружений предприятия могут входить:

        отстойники (горизонтальные, вертикальные, радиальные);

        фильтры (сетчатые, напорные, медленные, быстрые);

        гидроциклоны.

Конструкционное исполнение и состав элементов очистных сооружений зависят от мощности в системе в целом и требований, предъявляемых к воде.

Задачей очистных сооружений на выходе из предприятия является очистка воды от технологических примесей до уровня, устанавливаемого из соображений не нарушения экологического равновесия в  природном источнике или регионе. На больших и средних предприятиях при большом водопотреблении часть элементов ОС выполняется на открытой местности.

В последнее время в ОС все чаще стали применяться вещества дезактиваторы и специальные породы бактерий.

 

Охлаждающие устройства, трубопроводы и арматура

 

Конструктивное исполнение охлаждающих устройств связано, прежде всего с мощностью системы водоснабжения. Второй параметр, который необходимо учитывать — тип системы. Они могут выполняться в виде баков, открытых водоемов, градирен, прудов с естественной циркуляцией.

Арматура и трубопроводы, используемые в системах водоснабжения, существенно отличаются по диаметру и конструкции. К ним относятся:

   трубы водопроводные;

   вентили, задвижки, краны, регуляторы и т.д.

В целях возможности проведения ремонта или быстрой замены отдельного элемента системы водоснабжения все трубопроводы, запорно–регулирующая арматура и контрольно–измерительная аппаратура унифицированы и стандартизированы (нормированы по диаметру).


Лекция 5.

Системы воздухоснабжения промышленных предприятий

 

По величине рабочего давления системы воздухоснабжения разделяют на:

1) системы низкого давления (2-3 атм.);

2) системы среднего давления (6-9 атм.);

3) системы высокого давления (от 20 атм. и выше ).

 

Технология производства сжатого воздуха

 

Методы получения сжатого воздуха: объемный, динамический. 

Поршневая компрессорная установка

 Рисунок 1 - Поршневая компрессорная установка

 

1 — всасывающее устройство

2 — фильтр

3 — первая ступень компрессора

4 — вторая ступень компрессора

5 — межступенчатый

       холодильник

6 — концевой холодильник

7 — влаго–маслоотделитель

8 — ресивер

9 — магистральный вентиль

10 — пусковой вентиль

11 — выпускной вентиль

12 — сборный бак

13 — магистраль

 

Схема работает следующим образом. Поршневой компрессор, приводимый в движение электродвигателем, через воздухозаборное устройство (1) засасывает атмосферный воздух. Пройдя по прямому участку трубопровода, воздух попадает в фильтр (2), где очищается от примеси атмосферной влаги и пыли. Далее, проходя  через всасывающий трубопровод, воздух попадает в  первую  ступень компрессора (3). После сжатия, через обратный клапан и промежуточный трубопровод, воздух нагнетается в межтрубное пространство промежуточного охладителя (5). Из охладителя воздух всасывается второй ступенью компрессора (4) и через нагнетательный трубопровод подается в межтрубное пространство концевого охладителя (6). После охлаждения воздух поступает в водомаслоотделитель (7) и далее в воздухосборник (8), предназначенный для снижения пульсации воздуха и резервировании его части. Из воздухосборника воздух по магистральному трубопроводу (13) поступает в воздушную сеть предприятия и к потребителю. Через продувочный бак (12) осуществляется слив конденсата из концевого охладителя и водомаслоотделителя. Кроме того схема компрессорной установки должна содержать:

а) предохранительные клапана  (сброс излишка воздуха );

б) запорные задвижки (предназначены для переключений, отключений, вывода в ремонт элементов компрессорной установки);

в) обратный клапан (предназначен для избежания утечек воздуха из сети при отключении компрессора);

г) разгрузочный вентиль (предназначен для сброса воздуха и облегчения пуска компрессорной установки).

Компрессорные установки выполненные на базе поршневых компрессоров предназначены для производств, в которых потребителям воздуха требуется воздух высокого давления и в небольшом количестве (при малых расходах). Для повышения давления воздуха используется многоступенчатые компрессоры. После каждой ступени могут быть установлены промежуточные холодильники.

 

Технология получения сжатого воздуха с помощью центробежных компрессоров

 

Компрессорные установки, построенные на базе центробежных компрессоров, используются в производстве с большим расходом воздуха и малых давлениях.

Принципиальная схема турбокомпрессорной установки, построенной на базе центробежных компрессоров, приведена на рис.1.

Турбокомпрессорная установка на базе центробежных компрессоров

Рисунок 1 - Турбокомпрессорная установка на базе центробежных компрессоров 

1 — воздухоприемник

2 — фильтр

3 — дроссельный клапан

4 — секции компрессора

5 — межсекционный

       холодильник

6 — промежуточный холодильник

7 — концевой холодильник

8 — обратный клапан

9 — глушитель

10 — антипомпажный клапан

11 — выхлопная задвижка

12 — напорный коллектор

13 — промежуточный отбор

 

Установка работает так. Атмосферный воздух засасывается через воздухоприемник (1) и проходит предварительную очистку в фильтре (2). Между второй и первой ступенью компрессора устанавливается дроссельный клапан (3), связанный с регулятором давления.

Это позволяет поддерживать постоянное давление в напорном коллекторе (12) путем открытия или закрытия дроссельной заслонки на входе. Затем воздух поступает в первую секцию турбокомпрессора и далее через межсекционный холодильник (5)  во вторую ступень компрессора. Поле второй секции компрессора, пройдя через промежуточный холодильник (6) и третью секцию компрессора, воздух поступает в  концевой холодильник (7). После концевого холодильника воздух поступает в напорную линию (12). На участке сети от концевого холодильника до напорной линии устанавливается обратный (8), антипомпажный (10) клапана и выхлопная задвижка (11). Антипомпажный клапан открывается автоматически при уменьшении потребления воздуха, часть воздуха при этом сбрасывается в атмосферу через глушитель (9). При необходимости получить воздух низкого давления возможен промежуточный отбор воздуха (13) с любой из секций компрессора. Для ручной регулировки сброса воздуха и запуска компрессора в случае одновременной параллельной работы нескольких установок в сеть предназначена выхлопная задвижка (11).

В системе воздухоснабжения, построенной на базе центробежных компрессоров, отсутствует воздухосборник (нет пульсаций и воздуховоды большого диаметра выполняют роль ресивера), а также водомаслоотделитель.

 Лекция 6.

Производство и потребление сжатого воздуха на промышленных предприятиях

 

Тип, характер и разветвленность воздушных сетей предприятия. Мощность основного и вспомогательного оборудования установленного на компрессорной станции выбирается исходя из условий технологического процесса. Их схемы могут существенно отличаться и зависят в первую очередь от мощности предприятия. Например схема СВСПП (система воздухоснабжения промышленного предприятия) средней мощности может выглядеть следующим образом:

 

Схема системы воздухоснабжения промышленных предприятий

Рисунок 2 - Схема системы воздухоснабжения промышленных предприятий


где:   I—секция поршневых компрессоров компрессорной станции;

 II—секция турбокомпрессоров компрессорной станции;

III—транспортные магистрали; IV—межцеховые сети; V—кольцевая сеть предприятия; VI—тупиковые сети; VII—напорные сети; 1—поршневые компрессоры; 2—центробежные компрессоры; 3—фильтры; 4—водомаслоотделитель; 5—концевые холодильники; 6—ресивер; 7—потребители воздуха; 8—дожимной компрессор; 9—запорно-регулирующая аппаратура; 10—потребитель воздуха (использует воздух двух давлений).

В состав системы воздухоснабжения предприятия средней мощности входят компрессорные и воздуходувные (последние иногда входят в состав компрессорной станции в качестве отдельных установок) воздушные сети, трубопроводный или баллонный транспорт, распределительное устройство и потребители сжатого воздуха.

Компрессорные станции в зависимости от потребляемого количества воздуха (расхода Q или G) и его давления необходимого для потребителя могут комплектоваться: центробежными и поршневыми компрессорами; воздуходувками; вентиляторами.

Для доставки воздуха потребителям используются разветвленные воздушные сети радиального, магистрального, кольцевого, тупикового типов.

 

Типы воздушных сетей

 Рисунок 3 - Типы воздушных сетей

Сети сжатого воздуха на предприятии разделяют на межцеховые и внутренние. Межцеховые сети — участки сети от сборных коллекторов компрессорной станции до ввода в конкретный цех.

Межцеховые сети прокладываются в каналах и траншеях (подземный способ прокладки), по эстакадам или лотках (надземный способ прокладки). Выбранный способ прокладки должен обеспечивать возможность проведения ремонтных работ и  ликвидаций аварий без остановки компрессорной станции.

Сети сжатого воздуха

 Рисунок 4 - Сети сжатого воздуха


Для отключения отдельных участков цепи и осуществления переключений различного рода устанавливается запорно-регулирующая аппаратура (арматура). К ней относятся: вентили, задвижки, заслонки, регуляторы, клапана и т.д.

Наиболее надежной считается схема, при которой на каждый крупный потребитель работает свой компрессор, однако в силу дороговизны таких схем чаще используются организация параллельной работы компрессоров на сборный коллектор.

Для компенсации температурных деформаций используют: специальные участки цепи (компенсаторы), подвижные опоры, подвижное закрепление трубопровода на опоре.

К внутрицеховым сетям сжатого воздуха относятся все участки воздушной сети начинающиеся от ввода в цех и предназначенные для обеспечения воздухом каждого из потребителей.

В местах ввода воздушной сети в цех оборудуются узлы ввода. Они могут быть выполнены по следующей схеме (рис.5).

В состав узлов ввода также могут входить другие приборы и устройства (термометры, сборные коллектора, задвижки и т.д.).

Узел ввода

Рисунок 5 - Узел ввода

1 - измерительная  диафрагма; 

2 - редукционный клапан; 

3 - манометры; 

4 - дифманометры; 

5 - водомаслоотделитель.


Лекция 7.

Системы теплоснабжения

 

Общие понятия

 

В общем случае системой теплоснабжения называется совокупность источников теплоты, устройств для транспорта теплоты (тепловых сетей) и потребителей теплоты.

Основное назначение систем теплоснабжения – обеспечение потребителей необходимым количеством теплоты требуемых параметров.

Системы теплоснабжения: централизованные и децентрализованные. Централизованная система теплоснабжения: источник и потребители значительно удалены друг от друга, передача теплоты производится по тепловым сетям. Децентрализованная система теплоснабжения: источник теплоты и теплоприемники потребителей совмещены в одном агрегате или находятся так близко друг от друга, что не требуется специальных устройств для транспорта теплоты (тепловой сети).

Централизованное теплоснабжение разделяется на:

групповое – теплоснабжение группы зданий от одного источника теплоты;

районное – теплоснабжение района города от одного источника теплоты;

городское – теплоснабжение нескольких районов города или города в целом от одного источника теплоты;

межгородское – теплоснабжение нескольких городов от одного источника теплоты.

Централизованное теплоснабжение представляет собой совокупность следующих операций: подготовка теплоносителя, транспорт теплоносителя; использование теплоносителя.

Подготовка теплоносителя производится в теплоподготовительных установках на теплоэлектроцентралях, а также в городских, районных, квартальных или промышленных котельных. Транспортируется теплоноситель по тепловым сетям, а используется в теплоприемниках потребителей.

Децентрализованное теплоснабжение: индивидуальное и местное. Индивидуальное: каждое помещение имеет отдельный собственный источник теплоты (печное или поквартирное отопление). Местное: отопление всех помещений здания производится от отдельного общего источника теплоты (домовой котельной).

Системы теплоснабжения классифицируют:

по виду транспортируемого теплоносителя – паровые, водяные, газовые, воздушные;

по числу параллельно проложенных трубопроводов – одно-, двух- и многотрубные;

по способу присоединения систем горячего водоснабжения к тепловым сетям – закрытые и открытые;

по виду потребителя теплоты – коммунально-бытовые и технологические.

Теплоноситель характеризуется санитарно-гигиеническими, технико-экономическими и эксплуатационными показателями.

Газы: образуются при сгорании топлива, имеют высокую температуру, однако транспортирование газов усложняет систему отопления и приводит к значительным тепловым потерям.

С санитарно-гигиенической точки зрения при использовании газов трудно обеспечить допустимые температуры нагревательных элементов. Однако, будучи перемешаны в определенной пропорции с холодным воздухом, газы в виде теперь уже газо-воздушной смеси могут быть использованы в различных технологических установках.

Воздух: используется в системах воздушного отопления, позволяет довольно просто поддерживать постоянную температуру в помещении. Однако, вследствие малой теплоемкости (примерно в 4 раза меньше воды) масса воздуха, нагревающего помещение должна быть значительной, что приводит к существенному увеличению габаритов каналов (трубопроводов, коробов) для его перемещения, росту гидравлических сопротивлений и расходу электроэнергии на транспортировку. Поэтому воздушное отопление на промышленных предприятиях осуществляется или совмещенным с системами вентиляции, или путем установки в цехах специальных отопительных установок (воздушных завес и т.п.).

Пар: при конденсации в нагревательных устройствах (трубах, регистрах, панелях и т.п.) отдает значительное количество теплоты за счет высокой удельной теплоты преобразования. Поэтому масса пара при данной тепловой нагрузке уменьшается по сравнению с другими теплоносителями. Однако при использовании пара температура наружной поверхности нагревательных устройств будет выше 100°С, что приводит к возгонке пыли, осевшей на этих поверхностях, к выделению в помещениях вредных веществ и появлению неприятных запахов. Кроме того, паровые системы являются источниками шумов; диаметры паропроводов довольно значительны вследствие большого удельного объема пара.

Вода: имеет высокую теплоемкость и плотность, что позволяет передавать большие количества теплоты на значительные расстояния при невысоких тепловых потерях, малых диаметрах трубопроводов и невысоких температурах поверхности нагревательных устройств. Однако перемещение воды требует больших затрат энергии. Используется в качестве теплоносителя для сезонной нагрузки отопления и горячего водоснабжения.

Водяные системы теплоснабжения: закрытые и открытые.

Закрытые: вода циркулирует в замкнутом контуре «источник теплоснабжения – тепловая сеть – потребитель теплоты – источник теплоснабжения». Вода используется только как теплоноситель, из сети не отбирается ни на бытовые, ни на технологические нужды.

Открытые: циркулирующая вода частично разбирается потребителями для горячего водоснабжения.

В зависимости от схемы теплоснабжения в сети может быть минимум одна труба для открытой системы и две – для закрытой.

 

Закрытая двухтрубная водяная система

теплоснабжения

 

По подающей линии I тепловой сети горячая вода поступает в абонентские установки (абонентские вводы или индивидуальные тепловые пункты – ИТП), по обратной линии II охлажденная вода возвращается к источнику теплоты (на ТЭЦ или в котельную). Потребители присоединяются к тепловой сети по различным схемам (а, б, в, г) в зависимости от характера абонентского ввода или ИТП и режима работы тепловой сети.

На рисунке 1 приведены: зависимая схема присоединения потребителя теплоты со струйным смешением (а), независимая схема присоединения потребителя теплоты (б), зависимая схема со струйным смешением с узлом подготовки воды для горячего водоснабжения (в), независимая схема с узлом подготовки горячей воды последовательно в двух теплообменниках (г).

Цифрами на рисунке 1 обозначены: 1–регулятор подпитки; 2–подпиточный насос; 3–сетевой насос; 4–водоводяной теплообменник; 5–насос рециркуляции горячей воды; 6–водогрейный котел; 7–воздушный кран; 8–нагревательное устройство; 9-расши-рительный бак; 10–устройство для раздачи горячей воды; 11,21–насосы; 12,16–первая и вторая ступени подогрева воды в линии горячего водоснабжения; 13,22–подогреватель воды в контуре отопления; 14,23–регулятор температуры воздуха в помещениях; 15,19–регулятор температуры воды в линии горячего водоснабжения; 17–регулятор расхода воды из прямого трубопровода I; 18,25–элеватор; 20–подогреватель воды, подаваемой на горячее водоснабжение; 24–регулятор расхода греющего теплоносителя.

Тепловые пункты подразделяются на:

ИТП (вентиляции, горячего водоснабжения, технологических теплоиспользующих установок одного здания или его части);

Изображение 22

Рисунок 1.

 

центральные тепловые пункты (ЦТП): сооружаемые для двух или более зданий или одного здания при устройстве в нем нескольких ИТП.

На ЦТП осуществляется присоединение теплопотребляющих установок группы жилых и общественных зданий к тепловой сети. Обычно ЦТП размещают в отдельных специальных зданиях. В ЦТП устанавливаются блоки подогревателей (ГВС) горячего водоснабжения (при независимой схеме); групповая смесительная установка сетевой воды; подкачивающие насосы холодной водопроводной воды, а при необходимости и сетевой; регуляторы и контрольно-измерительные приборы (КИП).

При использовании ЦТП уменьшаются затраты на сооружение подогревательной установки ГВС, насосных установок и систем автоматического регулирования, но возрастают затраты на сооружение участка тепловой сети между ЦТП и отдельными зданиями, так как вместо двухтрубной сети требуется сооружать четырех трубную или трехтрубную при тупиковой схеме ГВС.

Основными недостатками закрытых систем являются:

1. Сложность оборудования и эксплуатации систем ГВС вследствие установки водоводяных подогревателей.

2. Накипеобразование в подогревателях и трубопроводах ГВС при использовании водопроводной воды, имеющей высокую карбонатную жесткость.

3. Коррозия установок подготовки горячей воды в ИТП и ЦТП вследствие использования в них недеаэрированной водопроводной воды.

 

Открытые системы

 

Основными типами открытых систем являются двухпроводные системы теплоснабжения.

Возможные варианты присоединения потребителей к таким системам приведены на рисунке 2, где цифрами обозначены: 1 – регулятор подпитки; 2 – подпиточный насос; 3 – сетевой насос; 4 – подогреватель обратной воды; 5–водогрейный котел; 6  - потребители горячей воды в системе ГВС; 7–потребители теплоты в системе отопления; 8 – воздушные краны; 9–аккумулятор горячей воды в системе ГВС; 10 – расширительный бак в системе отопления; 

11 – подогреватель воды в независимой системе отопления; 12 – насос циркуляции воды в системе отопления; 13, 18 (19) –регуляторы температуры воздуха в помещениях; 14 – обратные клапаны; 15,20,23, 25 – регуляторы температуры горячей воды у потребителей 6; 16 – насос для циркуляции воды в отопительной системе при отключении тепловой сети (насоса 3); 17 – элеватор; 21 – постоянное сопротивление (дроссельная шайба); 22, 27 – регулятор расхода воды из тепловой сети; 24 – насос рециркуляции воды в системе ГВС; 26 – смеситель.

Изображение 23

 Рисунок 2.

 

Отопительные установки присоединяются к тепловой сети по тем же схемам, как и в закрытых системах теплоснабжения. Схемы присоединения установок ГВС принципиально отличаются от рассмотренных ранее. Горячее водоснабжение потребителей производится водой непосредственно из тепловой сети (рис.2,а). Вода из подающей линии I поступает через клапан регулятора температуры 25 в смеситель 26 (рис.2,б). В этот же смеситель поступает вода из обратной линии II через обратный клапан 14; в смесителе 26 поддерживается постоянная температура (около 60ºС). Обратный клапан препятствует попаданию воды из линии I в линию II. Зарядка аккумулятора горячей воды 9 производится под напором воды в тепловой сети при малом водоразборе потребителями 6. При увеличении водоразбора горячая вода из аккумулятора 9 под статическим напором поступает к потребителям. Регулятор расхода 22, установленный на общей подающей линии абонентского ввода (ИТП), поддерживает постоянный расход воды на ГВС и отопление (рис.2,в). Во время повышенного разбора воды на ГВС снижается подача воды на отопление. Недоданная на отопление теплота компенсируется в часы малого отбора воды на ГВС. На схемах (рис.2, г, д) местное регулирование отопительной нагрузки производится по температуре воздуха в помещении (по зависимой и независимой схемам).

Значительная часть воды из тепловой сети расходуется на ГВС, вследствие чего требуются большие расходы воды, подогретой примерно до 70ºС, на подпитку сети. Это позволяет использовать в значительных количествах отходящие теплые воды с температурой 15…30ºС, имеющиеся на электростанциях и промышленных предприятиях, что дает экономию топлива. При открытых системах упрощается оборудование ИТП (отсутствуют водоводяные подогреватели ГВС).

Недостатки открытых систем:

а) усложнение и удорожание подготовки воды в источнике теплоснабжения;

б) нестабильность воды ГВС по запаху, цветности и санитарным качествам;

в) усложнение эксплуатации из-за нестабильного гидравлического режима тепловой сети вследствие переменного расхода воды обратной линии;

г) сложность контролирования непроизводительных утечек воды;

д) увеличение объема санитарного контроля воды в системе теплоснабжения.

Паровые системы бывают двух типов: с возвратом конденсата и без возврата конденсата. На практике широко применяется однотрубная паровая система с возвратом конденсата, приведенная на рисунке 3, где цифрами обозначены: 1–источник пара; 2–паровой клапан; 3–воздушный кран; 4–паровое обогревательное устройство; 5–конденсатоотводчик; 6–обратный клапан; 7–кон-денсатосборник; 8–конденсатный насос; 9–циркуляционный насос; 10–пароводяной теплообменник; 11–расширительный бак; 12–водяное обогревательное устройство; 13–регулятор температуры воды в системе ГВС; 14–аккумулятор горячей воды; 15–потребители горячей воды в системе ГВС; 16–редукционное устройство; 17–потребители пара на предприятии; 18–механический термокомпрессор.

Пар от источника поступает в однотрубную паровую сеть I и транспортируется по ней к тепловым потребителям. Конденсат от потребителей возвращается к источнику теплоты по конденсатопроводу II. Схема присоединения потребителей к паровой сети зависит от пароиспаряющей установки. На схеме (рис.3,а) показан случай, когда пар подается непосредственно в обогревательные устройства, после которых сконденсировавшийся пар (конденсат) скапливается в конденсатоотводчике 5 и через обратный клапан 6 сливается в конденсатный бак 7, откуда конденсатным насосом перекачивается к источнику пара 1. В качестве источника пара, подаваемого в паровую сеть I, может быть либо паровой котел, либо специальные промышленные отборы пара от работающей турбины электростанции.

Если пар не может быть подан непосредственно в отопительные установки (а) или в установки подготовки горячей воды для ГВС, то присоединение выполняется по независимым схемам (рис.3, б, в).

Технологические паропотребляющие установки 17 промышленных предприятий присоединяются либо непосредственно к паровой сети, либо через редукционные устройства 16 (рис.3, г, д).

Возврат конденсата, температура которого 40…90ºС, позволяет значительно повысить экономичность источника пара. Повышение экономичности достигается вследствие:

а) экономии топлива на подогрев замещающей конденсат сырой воды;

б) уменьшения расхода сырой воды;

в) уменьшения затрат на химическую очистку сырой воды.

В тех случаях, когда давление пара в паровой сети меньше, чем требуемое для технологического процесса, оно может быть повышено при помощи компрессора 18 с электрическим или механическим приводом.

Системы парового отопления по сравнению с водяными имеют некоторые преимущества:

а) возможность быстрого нагрева помещений и быстрого отключения;

Изображение 24

Рисунок 3.

 

б) меньшие гидравлические сопротивления;

в) меньшие капитальные затраты и эксплуатационные расходы.

Недостатки паровых систем:

а) невозможность центрального регулирования;

б) высокие температуры нагревательных устройств (100…150ºС);

в) быстрая коррозия труб, особенно конденсатопроводов;

г) повышенные тепловые потери;

д) шум в паропроводах.


Воздушные системы

 

При обогреве производственных помещений воздухом, последний нагревается в специальных установках – калориферах теплотой пара, горячей воды или дымовых газов.

Системы воздушного отопления могут выполняться:

а) с естественным движением нагреваемого воздуха и с принудительным (при помощи вентиляторов);

б) с местным приготовлением горячего воздуха и с центральным.

По качеству подаваемого воздуха системы воздушного отопления (рис.4) делятся на три типа: прямоточные (а), с полной рециркуляцией (б) и с частичной рециркуляцией (в). На рисунке 4 обозначены: 1–воздухонагревательная установка; 2–подающие воздуховоды; 3–удаляющие воздуховоды; 4–рециркуляционные воздуховоды; 5–отапливаемое помещение. 

Изображение 25

Рисунок 4. Типы системы воздушного отопления, в зависимости от качества подаваемого воздуха

  

В прямоточных схемах нагревается и подается в помещение только наружный воздух. В системах с полной рециркуляцией нагревается и подается только воздух, забираемый из помещения. 

В системах с частичной рециркуляцией нагревается и подается в помещение смесь наружного и рециркуляционного воздуха, причем часть воздуха помещения в количестве, равном количеству наружного воздуха, удаляется из помещения.

Системы с рециркуляцией применяются при условии, что в воздухе помещения не содержатся вредные вещества. При наличии их применяются прямоточные схемы с полной сменой воздуха в помещении.

 

Лекция 8.

 

Источники и потребители тепловой энергии

 

Существует два основных вида источников тепловой энергии (теплоносители - пар и горячая вода): котельные и ТЭЦ.

Если ТЭЦ является источником и тепловой и электрической энергии, то котельная вырабатывает только теплоту.

Котельная - это совокупность устройств, состоящая из котлов, вспомогательного оборудования и систем хранения, подготовки и транспорта топлива; подготовки, хранения и транспорта воды; золо- и шлакоудаления, а также сооружений для очистки дымовых газов и воды.

Главный элемент любого источника тепловой энергии - котельная установка, служащая для выработки пара или горячей воды. Котельная установка - это совокупность котла и вспомогательного оборудования. Котел -это конструктивно объединенный в одно целое комплекс устройств для получения пара или нагрева воды под давлением за счет тепловой энергии от сжигания топлива. Котлы подразделяются на паровые, водогрейные и паро - водогрейные.

Паровые котлы делятся на энергетические и котлы промышленной теплоэнергетики.

Энергетические котлы входят в состав тепловых электростанций и служат для получения перегретого водяного пара различных давлений и температур. Котлы промышленной теплоэнергетики служат для выработки насыщенного или перегретого пара низких и средних параметров. Этот пар используется либо в качестве технологического в производственных процессах предприятия, либо для приготовления горячей воды на нужды отопления, вентиляции, кондиционирования и горячего водоснабжения (ГВС).

Водогрейные котлы могут устанавливаться как на ТЭЦ, так и в котельных. Нагретая в них вода используется для тех же нужд.

Паровые котлы классифицируются по целому ряду признаков: конструкции, компоновке поверхности нагрева, производительности, параметрам пара, виду применяемого топлива, способу подачи и сжигания топлива, давлению дымовых газов.

Широко распространенными паровыми котлами являются вертикально-водотрубные котлы типа ДКВР, предназначенные для производства насыщенного пара давлением 1,4 МПа. Паропроизводительность их составляет 4; 6,5; 10; 20 т/ч при работе на твердом топливе и увеличивается в 1,3... 1,5 раза при работе на мазуте и газе. В настоящее время взамен ДКВР выпускается новая серия котлов производительностью от 2,5 до 25 тонн насыщенного или перегретого пара в час типов КЕ (для слоевого сжигания твердого топлива) и ДЕ (для работы на мазуте и газе).

В промышленной теплоэнергетике используются также паровые котлы П - образной компоновки типов ГМ50-14/250, ГМ50-1, БК375-39/440. Котлы типа ГМ могут работать на газе или мазуте, а БКЗ - также и на твердом топливе.

Паровые котлы различаются по конструкции, типу, производительности, параметрам пара и виду применяемого топлива.

Котлы малой (до 25 т/ч) и средней (160...220 т/ч) производительности с давлением пара до 4 МПа применяются в производственных и отопительных котельных для получения тепловой энергии в виде пара, идущего на технологические и отопительно - бытовые нужды.

Котлы производительностью до 220 т/ч имеют естественную циркуляцию без промежуточного перегрева пара и применяются на промышленных теплоэнергетических установках и ТЭЦ.

Водогрейные котлы предназначены для подготовки теплоносителя в виде горячей воды для технологического использования и бытового (отопление, вентиляция, кондиционирование и горячее водоснабжение).

Водогрейные котлы могут быть чугунными секционными и стальными водотрубными.

Чугунные секционные водогрейные котлы, например, типов КЧ-1, «Универсал», «Братск», «Энергия» и др. отличаются размерами и конфигурацией чугунных секций; мощность этих типов котлов - 0,12... 1 МВт.

Стальные водогрейные котлы имеют маркировку ТВГ, ПТВМ и КВ. Эти котлы отпускают воду с температурой до 150°С и давлением 1,1... 1,5 МПа, теплопроводностью от 30 до 180 Гкал/ч (35...209 МВт).

Котлы типа ПТВМ работают на газе и мазуте. Котлы типа KB являются унифицированными, предназначенными для работы на твердом, газообразном и жидком топливе. В зависимости от вида и способа сжигания топлива котлы KB делятся на КВТС (слоевые механизированные топки), КВТК (камерная топка для сжигания пылевидного топлива), КВГМ (для сжигания газа и мазута).

Теплоэлектроцентрали (ТЭЦ) - это станции комбинированной выработки электрической и тепловой энергии. Перегретый пар от котла подается на лопатки паровой турбины, закрепленные на роторе. Под воздействием энергии пара ротор турбины вращается. Этот ротор жестко связан при помощи соединительной муфты с ротором электрогенератора, при вращении которого вырабатывается электроэнергия. Пар, частично отдавший свою энергию в турбине, поступает потребителям либо для технологического использования, либо для нагрева воды, подаваемой потребителям.

На ТЭЦ применяются теплофикационные турбины с промежуточными теплофикационными отборами пара и турбины с противодавлением.

Тепловая схема ТЭЦ с противодавлением турбин показана на рис. 5, где: 1 - паровой котел, 2 - паровая турбина, 3. электрический генератор, 4 -потребитель теплоты, 5 - конденсатный насос, 6 - деаэратор, 7 - питательный насос.

Тепловая схема ТЭЦ с теплофикационными турбинами показана на рис. 6, где 1, 2, 3, 4 соответствуют обозначениям рис. 5, 5 - сетевой насос, 6-конденсатор, 7 - конденсатный насос, 8 - деаэратор, 9 - питательный насос.

, 6 - Тепловая схема ТЭЦ а) с противодавлением турбин; б) с теплофикационными турбинам

Рисунок 5, 6 -  Тепловая схема ТЭЦ: а) с противодавлением турбин; б)  с теплофикационными турбинам

 

ТЭЦ с турбинами с противодавлением характеризуется тем, что производство электроэнергии здесь жестко связано с отпуском тепловой энергии, работа такой станции целесообразна только при наличии крупных потребителей теплоты с постоянным расходом ее в течение года, например, предприятий химической или нефтеперерабатывающей промышленности.

ТЭЦ с теплофикационными турбинами лишены этого недостатка и могут одинаково эффективно работать в широком диапазоне тепловых нагрузок. В тепловой схеме имеется конденсатор, а пар для подогрева воды отпускается из промежуточных ступеней турбины. Количество пара и его параметры регулируются, такие отборы называются теплофикационными в отличие от отборов, используемых для регенеративного подогрева питательной воды.

Для теплоснабжения городов и населенных пунктов используются отопительные котельные. Они бывают:

а) индивидуальные (домовые) или групповые для отдельных зданий или группы зданий. Теплопроизводительность таких котельных 0,5...4 МВт, вид котлов - водогрейные чугунные секционные, температура теплоносителя 95...115°С, КПД на каменном угле - 60-70%, на газе и мазуте- 80-85%;

б) квартальные для теплоснабжения квартала или микрорайона. Теплопроизводительность - 5...50 МВт, вид котлов - стальные паровые типа ДКВР или ДЕ и водогрейные типов КВТС, КВГМ, ТВГ, температура теплоносителя 13О...15О°С, КПД на каменном угле - 80-85%, на газе и мазуте - 85-92%;

в) районные для теплоснабжения одного или нескольких жилых районов. Теплопроизводительность - 70...500 МВт, вид котлов - стальные водогрейные типов ПТВМ, КВТК, КВГМ, температура теплоносителя 150...200°С, КПД на каменном угле - 80-88%, на газе и мазуте - 88-94%; или паровые типа ДКВР, ДЕ, ГМ-50.

Если котельная помимо нужд отопления и горячего водоснабжения (ГВС) I отпускает пар, то такая котельная называется промышленно-отопительной. Если котельная обеспечивает тепловой энергией в виде пара и горячей воды только нужды предприятия, то такая котельная называется промышленной. Котельные могут быть также только с водогрейными котлами (водогрейная котельная), только с паровыми котлами (паровая котельная) и с паровыми и водогрейными котлами (паро-водогрейная котельная). Пример отопительной котельной с паровыми котлами показан на упрощенной схеме рис. 7.

Изображение 27

Рисунок 7. Пример отопительной котельной с паровыми котлами 

Здесь 1 - питательный насос, 2 - паровой котел, 3-паровая редукционная установка (РУ), 4 - транспорт пара на технологические нужды предприятия, 5 - трубопровод подпитки тепловой сети, 6 - сетевой насос, 7 - теплообменники подогрева сетевой воды, 8 - тепловая сеть, 9 -деаэратор.

Тепловая сеть - это система прочно и плотно соединенных между собой участков стальных труб (теплопровод), по которым теплота с помощью теплоносителя (пара или, что чаще, горячей воды) транспортируется от источников (ТЭЦ или котельных) к потребителям теплоты.

Теплотрассы бывают подземные и надземные. Надземная прокладка тепловых сетей используется при высоком уровне грунтовых вод, плотной застройке районов прокладки теплотрассы, сильно пересеченном рельефе местности, наличии многоколейных железнодорожных путей, на территориях промышленных предприятий при наличии уже имеющихся энергетических или технологических трубопроводов на эстакадах или высоких опорах.

Диаметры трубопроводов тепловых сетей колеблются от 50 мм (распределительные сети) до 1400 мм (магистральные сети).

Около 10% тепловых сетей проложены надземно. Остальные 90% тепловых сетей проложены под землей. Около 4% проложены в проходных каналах и тоннелях (полупроходных каналах). Около 80% тепловых сетей проложены в непроходных каналах. Около 6% тепловых сетей уложены бесканально. Это самая дешевая укладка, но, во - первых, наиболее подверженная повреждениям и, во - вторых, она требует больших затрат при ремонте, особенно в условиях прокладки в кислых влажных грунтах Северо - Запада.

Тепловая энергия используется в процессе отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения, пароснабжения.

Отопление, вентиляция, кондиционирование воздуха служат для создания комфортных условий для проживания и трудовой деятельности людей. Объем потребления тепловой энергии для этих целей определяется сезоном и зависит прежде всего от температуры наружного воздуха. Для сезонных потребителей характерным является относительно постоянный суточный расход теплоты и значительные его колебания по временам года.

Горячее водоснабжение - бытовое и технологическое - круглогодичное. Оно характеризуется относительно постоянным расходом в течение года и независимостью от температуры наружного воздуха.

Пароснабжение применяется в технологических процессах обдувки, пропарки, паровой сушки.

Отопление может быть местным или централизованным. Простейшим видом местного отопления является печь дровяного отопления, представляющая собой кирпичную кладку с топкой и системой газоходов для удаления продуктов сгорания. Выделенная в процессе сгорания теплота нагревает кладку, которая в свою очередь отдает теплоту помещению.

Местное отопление может осуществляться с помощью газовых отопительных приборов, имеющих малые размеры и вес и высокую эффективность.

Применяются также поквартирные системы водяного отопления. Источник теплоты - водонагревательный аппарат на твердом, жидком или газообразном топливе. Вода нагревается в аппарате, подается в отопительные приборы и, охладившись, возвращается в источник.

В системах местного отопления в качестве теплоносителя может использоваться воздух. Аппараты нагрева воздуха называются огневоздушными или газовоздушными агрегатами. В помещениях воздух подается вентиляторами через систему воздуховодов.

Большое распространение получило местное отопление электрическими приборами, выпускаемыми в виде переносных аппаратов различных конструкций. В некоторых случаях применяются стационарные электроотопительные приборы с вторичными теплоносителями (воздухом, водой).

На предприятиях в производственных помещениях местное отопление практически не используется, однако в административных и бытовых помещениях оно может применяться (в основном электроприборы).

Централизованной называется система отопления с одним общим (центральным) источником теплоты. Это система отопления отдельного здания, группы зданий, одного или нескольких кварталов и даже небольшого города (например, для отопления и горячего водоснабжения города Сосновый Бор Ленинградской области используется один источник теплоты - Ленинградская атомная электростанция).

Отличаются системы также видом передачи теплоты воздуху помещения: конвективное, лучистое; типом нагревательных приборов: радиаторные, конвертерные, панельные.

На рис. 8 показана двухтрубная система центрального водяного отопления, в которой вода поступает в нагревательные приборы по горячим стоякам, а отводится по холодным. В этом случае температура воды получается одинаковой во всех приборах, независимо от их расположения.

Обозначения рис. 8: 1 - котельная, 2 - главный стояк, 3 -нагревательные приборы, 4 - расширительный бачок, 5 - горячая магистраль, 6 - горячий стояк, 7 - холодный стояк, 8 - обратная магистраль.


Изображение 29 

Рисунок 8.  Двухтрубная система центрального водяного отопления

 

Однотрубная система центрального отопления (рис. 9) отличается от двухтрубной тем, что вода поступает в приборы отопления и отводится от них по одному и тому же стояку. Схема однотрубной системы может быть проточной (рис. 9, а), с осевыми замыкающими участками (рис. 9, б), со смешанными замыкающими участками (рис. 9, в). Обозначения те же, что на рис. 8.

Изображение 29

 Рисунок 9. Однотрубная система центрального отопления

 

В проточных системах вода последовательно проходит через все приборы стояка, в системах с осевыми замыкающими участками вода частично проходит через приборы, частично через замыкающие участки, общие для двух приборов одного этажа, в системах со смешанными замыкающими участками вода ответвляется через два замыкающих участка.

В однотрубных системах температура воды снижается в направлении ее движения, то есть приборы верхних этажей горячее приборов нижних этажей. В этих системах несколько меньше расход металла на стояки, но требуется установка замыкающих участков.

Нагревательные приборы, устанавливаемые в обогреваемых помещениях, изготавливаются из чугуна и стали и имеют различные конструктивные формы от гладких труб, изогнутых или сваренных в блоки (регистры), до радиаторов, ребристых труб и отопительных панелей.

Вода для горячего водоснабжения должна быть такого же качества, как и питьевая, так как она используется для гигиенических целей. Температура воды должна быть в пределах 55.. .60°С.

Различают местное и центральное горячее водоснабжение. Местное горячее водоснабжение осуществляется с помощью водонагревательных аппаратов автономного и периодического действия с устройством распределения и разбора горячей воды. Водонагреватели работают на твердом топливе (угле, дровах), на газе и могут быть электрическими. По принципу действия водонагреватели делятся на емкостные и проточные.

Система центрального горячего водоснабжения применяется для объектов тепловой мощностью свыше 60 кВт. Система является частью внутреннего водопровода и представляет собой сеть трубопроводов, распределяющих горячую воду между потребителями.

 

Изображение 30

Рисунок 10. Система центрального горячего водоснабжения с рециркуляцией


На рис. 10 показана система центрального горячего водоснабжения с рециркуляцией, где 1 - водонагреватель первой ступени, 2 - водонагреватель второй ступени, 3 - подающая магистраль, 4 - водоразборные стояки, 5 -циркуляционные стояки, 6 - отключающие вентили, 7 - циркуляционная магистраль, 8 - насос.

Циркуляционные стояки предотвращают остывание воды в стояках при отсутствии водоразбора. Источником тепла служат водонагреватели (бойлеры), располагаемые в тепловом вводе здания или в групповом тепловом пункте.

Вентиляция служит для введения чистого воздуха в помещение и удаления загрязненного с целью обеспечения требуемых санитарно-гигиенических условий. Подаваемый в помещение воздух называется приточным, удаляемый - вытяжным.

Вентиляция может быть естественной и принудительной. Естественная вентиляция происходит под действием разности плотностей холодного и теплого воздуха, его циркуляция идет либо по специальным каналам, либо через открытые форточки, фрамуги и окна. При естественной вентиляции напор невелик и соответственно мал воздухообмен.

Принудительная вентиляция осуществляется с помощью вентиляторов, которые подают воздух и удаляют его из помещения с высокой эффективностью.

По виду организации воздушного потока вентиляция бывает общеобменной и местной. Общеобменная обеспечивает обмен воздуха во всем объеме помещения, а местная - в отдельных частях помещения (на рабочих местах).

Система вентиляции, только удаляющая воздух из помещения, называется вытяжной, система вентиляции, только подающая воздух в помещение, называется приточной.

В жилых домах применяется, как правило, общеобменная естественная вытяжная система вентиляции. Наружный воздух поступает в помещения путем инфильтрации (через неплотности в ограждениях), а загрязненный внутренний воздух удаляется через вытяжные каналы здания. Потери тепловой энергии от поступления холодного наружного воздуха восполняются системой отопления и составляют величину 5.. .10% нагрузки отопления в зимний период.

В общественных и производственных зданиях обычно устраивается приточно-вытяжная принудительная вентиляция, причем расход тепловой энергии учитывается отдельно.

Кондиционирование воздуха - это придание ему заданных свойств независимо от наружных метеорологических условий. Это обеспечивается специальными аппаратами - кондиционерами, которые очищают воздух от пыли, подогревают его, увлажняют или осушают, охлаждают, перемещают, распределяют и автоматически регулируют параметры воздуха.

Широкое распространение получили системы кондиционирования для производственных помещений на приборостроительных, радиоэлектронных, пищевых, текстильных предприятиях, к воздушной среде которых предъявляются высокие требования.

Основная задача кондиционера - термовлажностная обработка воздуха: зимой воздух следует подогреть и увлажнить, летом - охладить и осушить.

Воздух нагревается в калориферах, охлаждается в поверхностных или контактных охладителях, аналогичных по устройству калориферам, но в трубах охлаждения циркулирует холодная вода или хладоноситель (аммиак, фреон).

Осушение воздуха получается в результате контакта с поверхностью охладителя, температура которого ниже точки росы воздуха - на этой поверхности выпадает конденсат.

Для орошения воздуха используются форсунки подачи воды или смоченные поверхности с лабиринтными ходами.

 

Лекция 9.

Системы электроснабжения

В общем случае система электроснабжения (СЭС) включает в себя следующие элементы:

1) один или несколько источников питания;

2) питающие линии, связывающие потребителя с источниками питания;

3) пункты приема электроэнергии и собственные источники питания;

4) распределительные внутризаводские (межцеховые) и внутрицеховые сети.

Внешние источники питания и питающие линии относят к внешнему электроснабжению, все остальные элементы СЭС - к внутреннему. Поэтому для особо крупных потребителей СЭС обычно разделяют на две системы: систему внешнего электроснабжения и систему внутреннего электроснабжения. В качестве внешних источников питания, от которых осуществляется централизованное электроснабжение, используются сети районной энергосистемы. При этом питание крупных и средних потребителей может осуществляться как непосредственно от шин электростанций и районных подстанций энергосистем, так и ответвлениями от линий электропередачи, проходящих вблизи предприятия.

Собственный источник питания предприятия электроэнергией предусматривается:

1) при сооружении предприятий в районах, не имеющих связи с энергосистемой;

2) при наличии специальных требований к бесперебойности питания, когда собственный источник питания необходим для резервирования;

3) при значительной потребности в паре и горячей воде для производственных целей и теплофикации или же при наличии на объекте «отбросного» топлива (газ и т.п.) и целесообразности его использования для электростанций;

4) если сооружение собственного источника (например, на базе существующей котельной) приводит к снижению результирующих затрат на электроснабжение.

Мощность собственного источника определяется его назначением и колеблется от максимальной мощности, необходимой предприятию в нормальном режиме, до минимальной, необходимой в послеаварийном режиме. Собственные электростанции, за исключением расположенных в удаленных районах, должны быть электрически связаны с электрическими сетями энергосистемы.

Пунктами приема электроэнергии от внешнего источника могут являться узловые распределительные подстанции (УРП), главные понизительные подстанции (ГПП), центральные распределительные пункты и распределительные пункты (ЦРП и РП), подстанции глубокого ввода (ПГВ), трансформаторные подстанции (ТП), совмещенные или несовмещенные с РП, щиты 380/220 В.

Узловой распределительной подстанцией называется центральная подстанция предприятия с первичным напряжением 110 - 500 кВ, получающая энергию от энергосистемы и распределяющая ее по подстанциям глубоких вводов 110 - 220 кВ на территории предприятия. При питании на напряжении 110 - 220 кВ УРП обычно бывают чисто распределительными, а при напряжении 330 - 500 кВ появляется частичная трансформация на напряжение 110 кВ для распределения энергии между ПГВ.

Главной понизительной подстанцией называется подстанция, получающая питание непосредственно от энергосистемы при напряжении питающей сети (как правило, 35 - 220 кВ), трансформирующая ее на более низкое напряжение (обычно 6-10 кВ) и распределяющая энергию на этом напряжении по всему предприятию или отдельному его району.

Распределительным пунктом (РП) называется подстанция, предназначенная для приема и распределения электроэнергии на одном и том же напряжении без преобразования и трансформации. Распределительный пункт, получающий энергию непосредственно от энергосистемы, называется центральным распределительным пунктом (ЦРП).

Подстанцией глубокого ввода называется подстанция 35 - 220 кВ, получающая питание непосредственно от энергосистемы или УРП предприятия, предназначенная для питания отдельного объекта или района предприятия (цеха или группы цехов) и расположенная вблизи основных нагрузок этого объекта непосредственно на территории предприятия.

Сооружение того или иного пункта приема электроэнергии зависит от мощности, потребляемой предприятием от энергосистемы, от расстояния до источника питания, напряжения питающих линий и требуемой степени бесперебойности питания.

Для предприятий небольшой мощности пунктами приема могут служить непосредственно трансформаторные подстанции 6 - 10 / 0,38 кВ (ТП), а для малых предприятий мощностью до 100 - 200 кВт - щит 380/220 В.

Если на предприятии имеется собственная ТЭЦ, то пунктом приема электроэнергии может служить повысительная подстанция этой ТЭЦ (подстанция связи с энергосистемой) или, если напряжение питания от энергосистемы совпадает с генераторным напряжением ТЭЦ, распредустройство (РУ) генераторного напряжения ТЭЦ. В этом случае РУ ТЭЦ совмещается с ЦРП предприятия. Самостоятельное здание ЦРП сооружается только тогда, когда ТЭЦ расположена далеко от центра электрических нагрузок предприятия.

Схемы распределения электроэнергии по предприятию на напряжении выше 1000 В строятся по ступенчатому принципу. Число ступеней определяется мощностью предприятия и размещением электрических нагрузок на его территории. Обычно применяются две ступени распределения, а на небольших и некоторых средних предприятиях - одна. Схемы с числом ступеней более двух применяются в отдельных случаях для питания отдельных «выносных» трансформаторов.

Под первой ступенью распределения понимаются сети напряжением 110 - 220 кВ, соединяющие источники питания предприятия (УРП, ТЭЦ, ГПП) с ПГВ, если распределение производится при напряжении 110 - 220 кВ, или же сети между ГПП и РП, если распределение производится при напряжении 6 -10 кВ. Под второй ступенью распределения энергии подразумеваются распределительные сети напряжением 6 - 10 кВ, идущие от РП или РУ вторичного напряжения ПГВ к цеховым ТП или же отдельным электроприемникам высокого напряжения: электродвигателям, электрическим печам и т.д.

   

Лекция 10.

Радиальные и магистральные

схемы электроснабжения

 

Распределение электрической энергии по предприятию на напряжении выше 1000 В производят с помощью радиальных или магистральных линий. Под радиальной линией подразумевают такую, все нагрузки которой сосредоточены на ее конце (рис. 1, а, б); под магистральной – такую, нагрузки которой рассредоточены вдоль ее длины, т.е. отбор мощности от которой осуществляется в нескольких точках (рис. 2). Схему (сеть), состоящую только из радиальных линий, называют радиальной схемой (сетью), только из магистральных – магистральной, а из радиальных и магистральных – смешанной.

На первой ступени распределения энергии применяются:

а) при передаваемых мощностях около 50 MB-А и более - магистральные или радиальные линии 110 - 220 кВ, питающие подстанции глубокого ввода;

б) при передаваемых мощностях от 15 - 20 до 60 - 80 MB-А – магистральные (иногда радиальные) токопроводы 6 - 10 кВ;

в) при передаваемых мощностях менее 15-20 MB-А - магистральные или радиальные кабельные сети 6 или 10 кВ.

На второй ступени распределения применяются как радиальные, так и магистральные схемы.

Магистральные схемы напряжением 6 - 10 кВ при кабельных линиях применяются:

а) при расположении подстанций, благоприятствующем прямолинейному прохождению магистрали;

б) для группы технологически связанных агрегатов, если при остановке одного из них требуется отключение всей группы;

в) во всех других случаях, когда они имеют технико-экономические преимущества.

Радиальные схемы следует применять при нагрузках, расположенных в различных направлениях от источника питания.

К преимуществам радиальных схем относятся простота выполнения и надежность эксплуатации электрической сети; а также возможность применения быстродействующей защиты и автоматики.

Недостатки радиальных схем: 1) большое количество используемой высоковольтной аппаратуры, что приводит к удорожанию распределительных устройств и увеличению их габаритов; 2) повышенный расход кабельной продукции в связи с увеличением сечений кабелей против экономически целесообразных и суммарной длины кабельных линий.

Изображение 31

Рисунок 1. Распределение электрической энергии по предприятию на напряжении выше 1000, все нагрузки которой сосредоточены на ее конце


Магистральные схемы электроснабжения дают возможность снизить затраты за счет уменьшения количества используемых аппаратов и уменьшения длины питающих линий. На схемах рис. 2, а показано питание цеховых ТП с помощью так называемых одиночных магистралей. При одностороннем питании таких магистралей основным их недостатком (по сравнению с радиальными схемами) является меньшая надежность электроснабжения, так как при повреждении магистрали происходит отключение всех потребителей, питающихся от нее. Надежность питания будет повышена при подаче напряжения на второй конец магистрали от другого источника. В этом случае образуется кольцевая магистраль, от которой при наличии двухтрансформаторных подстанций могут питаться приемники второй категории. Для повышения надежности магистральных схем могут применяться и другие ее модификации, например схема двойных сквозных магистралей (рис. 2, 6), когда две магистрали поочередно заводятся на каждую  секцию подстанций; эта схема позволяет питать нагрузку первой категории.

На предприятиях средней и большой мощности широкое применение находит так называемый глубокий ввод - это система электроснабжения с максимально возможным приближением высшего напряжения (35 - 220 кВ) к электроустановкам потребителей с минимальным количеством ступеней промежуточной трансформации и аппаратов. На предприятиях средней мощности линии глубоких вводов заходят непосредственно от энергосистемы. В этом случае практически происходит объединение линий питающей сети 35 -220 кВ с линиями распределительной сети первой ступени распределения. На более крупных предприятиях глубокие вводы отходят от УПР или ГПП. 

Линии глубоких вводов проходят по территории предприятия в виде радиальных КЛ или ВЛ или в виде магистралей с ответвлениями к наиболее крупным пунктам потребления электроэнергии. Схема подстанции глубокого ввода 35 - 220 кВ приведена на рис. 3. При системе глубокого ввода напряжения 35 - 220 кВ на предприятии могут устанавливаться понижающие трансформаторы 220/6 - 10 кВ; 110/6 - 10 кВ; 35/6 - 10 кВ или 35/0,4 кВ. Применение схем глубокого ввода снижает протяженность распределительной сети 6 - 10 кВ или даже вообще ликвидирует ее. Таким образом, глубокий ввод снижает затраты на распределительную сеть и повышает надежность электроснабжения.

Изображение 32

Рисунок 2.  Распределение электрической энергии по предприятию на напряжении выше 1000, отбор мощности осуществляется в нескольких точках

Цеховые сети напряжением до 1000 В выполняются по радиальной, магистральной и смешанной схемам.

Изображение 33

 Рисунок 3. Схема подстанции глубокого ввода 35 - 220 кВ

 

Радиальные схемы характеризуются тем, что от источника питания, например, от распределительного щита 380/220 В цеховой ТП отходят линии, питающие крупные электроприемники (например, двигатели) или групповые распределительные пункты, от которых, в свою очередь, отходят самостоятельные линии, питающие более мелкие групповые РП или мелкие электроприемники.

Радиальными выполняются сети насосных или компрессорных станций, а также сети пыльных, пожароопасных и взрывоопасных помещений. Распределение электроэнергии в них производится радиальными линиями от РП, вынесенных в отдельные помещения. Радиальные схемы обеспечивают высокую надежность питания, в них легко может быть применена автоматика. Недостатком радиальных схем является то, что при них требуются большие затраты на установку распределительных щитов, прокладку кабелей и проводов.

Магистральные схемы находят наибольшее применение при более или менее равномерном распределении нагрузки по площади цеха (например, для питания двигателей металлорежущих станков в цехах механической обработки металлов). Применяются магистральные схемы и в других случаях. Так, если технологический агрегат имеет несколько электроприемников, осуществляющих единый, связанный технологический процесс, и прекращение питания любого из них вызывает необходимость прекращения работы всего агрегата, то в таких случаях надежность электроснабжения вполне обеспечивается при магистральном питании. В отдельных случаях, когда требуется весьма высокая степень надежности питания в непрерывном технологическом процессе, применяется двустороннее питание магистральной линии.

Применение магистральных схем позволяет отказаться от применения громоздкого и дорогого распределительного устройства или щита низкого напряжения.

На практике для питания цеховых потребителей применяются обычно смешанные схемы - в зависимости от характера производства, окружающей среды и т.п.

В целом, внутризаводскую систему электроснабжения можно представить в виде многоуровневой сложной иерархической системы. В общем случае количество уровней такой системы равно шести, причем номера уровней повышаются по мере увеличения их значимости в системе электроснабжения.

К первому уровню (1УР) относятся зажимы отдельных электроприемников, на которые подается напряжение, ко второму (2УР) -групповые распределительные пункты 380/220 кВ (силовые шкафы - ШС, осветительные щиты - ЩО и т.п.) и распределительные шинопроводы (ШР), к третьему (3УР) - цеховые ТП, к четвертому (4УР) - шины РП 6 - 10 кВ, к пятому (5УР) - шины 6 - 10 кВ ГПП, к шестому (6УР) - все предприятие в целом (т.е. 6УР относится к точкам раздела сетей потребителя и электроснабжающей организации).

В частных случаях количество уровней может быть больше или меньше шести - в зависимости от конкретных условий. Так, например, между 1УР и ЗУР может быть не один групповой распределительный пункт, а два - в том случае, если от ГРП питаются более мелкие РП, от которых получают питание мелкие электроприемники. В этом случае количество уровней увеличивается. Или на предприятии могут отсутствовать РП четвертого уровня - в этом случае количество уровней уменьшается. Кроме того, уровни, имеющие разные номера, могут объединяться. 

Так, при питании высоковольтных (6-10 кВ) электродвигателей от шин РП объединяются 2УР и 4УР, а непосредственно от шин ГПП - 2УР и 5УР. Наибольший интерес представляет объединение разных уровней с 6УР, отражающее тот факт, что потребители могут получать питания от разных уровней - в зависимости от вида пункта приема электроэнергии. 

Можно считать количество потребителей, получающих энергию от уровня п+1 на порядок меньше, получающих ее от уровня п. Если от 2УР питаются 90% потребителей (включая квартиры и индивидуальные жилые дома), то от 3УР -9%, от 4УР - 0,9%, от 5УР - 0,09% и от 6УР - 0,01%. Деление СЭС на уровни отражает разницу свойств, характеризующих потребителей различных уровней, и, как следствие этого, различие требований, предъявляемых ими к электроснабжению: с повышением номера уровня эти требования ужесточаются. Это касается, прежде всего, требований к надежности и качеству электроэнергии. От того, на каком уровне находится пункт приема электроэнергии, зависит организация обслуживания электроустановок потребителя. Если 6УР и 2УР, то у потребителя нет постоянного электротехнического персонала, обслуживающего его электроустановки. 

Обслуживанием электрооборудования занимается специально приглашаемый для этого персонал. При 6УР и 3УР у потребителя, как правило, уже есть электромонтеры, но нет специальных инженеров-электриков; эксплуатацией электрохозяйства занимается отдел главного механика. Когда 6УР и 4УР, то на предприятии создаются отдел главного энергетика и электроцех, обслуживающие электроустановки до 1000 В; капитальный ремонт электрооборудования производится специальными сторонними организациями, электроустановки выше 1000 В также обслуживаются сторонними организациями. В тех случаях, когда 6УР и 5УР, на предприятии уже может быть персонал, имеющий доступ к обслуживанию оборудования 6 - 10 кВ, но капитальный ремонт его, как правило, производится сторонними организациями.

Как все элементы вновь сооружаемых, реконструируемых и модернизируемых СЭС, так и СЭС, в целом, должны удовлетворять всем требованиям действующих Правил устройства электроустановок. 

При эксплуатации СЭС должны соблюдаться нормы Правил технической эксплуатации электроустановок потребителей (ПТЭ), а также Правил техники безопасности при эксплуатации электроустановок (ПТБ). Персонал, эксплуатирующий электроустановки, называется электротехническим персоналом (электроперсоналом). Весь электроперсонал разделяется на пять квалификационных групп (самая высокая группа - пятая). Для получения (и подтверждения) группы электроперсонал периодически проходит проверку знаний - на знание относящихся к его сфере деятельности положений (ПТЭ), (ПТБ) и должностных инструкций и обслуживаемого оборудования.


Лекция 11.

Системы освещения, основные понятия. Источники излучения

 

Лучистая энергия передается от тела к телу в виде фотонов электромагнитных волн различной длины (частоты). Значение энергии фотона связано с частотой электромагнитных колебаний соотношением

e = hn = (h×c)/l  ,

где   e  - энергия фотона, Дж; h - постоянная Планка, h = 6,6245´10 -34 Дж´с;  n - частота электромагнитных колебаний, Гц; l - длина электромагнитной волны, м.

Частота n и длина волны l, электромагнитного излучения взаимосвязаны со скоростью распространения электромагнитных волн в пространстве (со скоростью света) с = 3×108 м/с соотношением:

с = lv ,

Излучения оптического диапазона спектра электромагнитных колебаний в зависимости от длины волны l  делят: на видимое (от 380 до 760 нм), ультрафиолетовое (от 1 до 380 нм) и инфракрасное (от 760 до 106 нм), [1 нм = 10-9 м] (см. рис. 1).

Видимый солнечный свет - это сочетание излучений семи основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового, которые приведены в порядке уменьшения длины электромагнитной волны.

В оптической области спектра электромагнитных колебаний перед красным излучением находится инфракрасное (ИК - излучение), а за фиолетовым – ультрафиолетовое (УФ - излучение). (По-латыни «инфра» означает «впереди», а «ультра» — «за»). Инфракрасные и ультрафиолетовые лучи невидимы для человеческого глаза.

В свою очередь, ультрафиолетовое (УФ) излучение подразделяют: на длинноволновое зоны А (от 315 до 380 нм), средневолновое зоны В (от 280 до 315 нм) и коротковолновое зоны С (от 100 до 280 нм). УФ - излучение с длиной волны менее 100 нм интенсивно поглощается воздухом земной атмосферы и не достигает поверхности земли.

Длинноволновое УФ - излучение зоны А обладает крайне низкой фотобиологической активностью, но способно вызывать видимое свечение некоторых веществ. Поэтому его используют для люминесцентного анализа химического состава различных веществ и биологического состояния продуктов питания.

 

Изображение 34

Рисунок 1. Излучения оптического диапазона спектра электромагнитных колебаний в зависимости от длины волны

 

Средневолновое УФ - излучение зоны В оказывает благоприятное действие на живые организмы, вызывает эритему и загар, способствует лучшему усвоению витамина D, обладает мощным антирахитным действием. Для большинства растений УФ - излучение зоны В неблагоприятно.

Коротковолновое УФ - излучение зоны С обладает бактерицидным действием. Поэтому его применяют для обеззараживания продуктов питания, воды, воздуха, для дезинфекции и стерилизации различного инвентаря и посуды.

Инфракрасное (ИК) излучение также в зависимости от длины волны подразделяют на три зоны: коротковолновую А (от 760 до 1400 нм), средневолновую В (от 1400 до 3000 нм) и длинноволновую С (от 3000 нм до 1 мм).

ИК - излучение практически не поглощается воздухом и большую часть энергии своих фотонов расходует на образование теплоты в поверхностном слое тела нагрева. Глубина проникновения ИК - излучения в поверхностный слой составляет в среднем для воды 30...45 мм, для древесины - 3...7 мм, для сырого картофеля - до 6 мм, для тела животного — 2,5 мм, для зерна — 2 мм. В сельскохозяйственном производстве ИК - излучение используют для местного обогрева молодняка животных и птицы, сушки сельскохозяйственной продукции, лакокрасочных и других покрытий, для дезинсекции.

Электрическим источником оптического излучения, и в частности источником света, называют устройство для преобразования электрической энергии в лучистую энергию оптического спектра.

В применяемых электрических источниках оптического излучения электрическая энергия преобразуется в лучистую двумя основными способами: нагревом тела электрическим током и электрическим разрядом в газах и парах металлов. В соответствии с этим электрические источники оптического излучения (лампы) подразделяют на тепловые и разрядные. Возможна и комбинация указанных способов в одном источнике. Различные лампы отличаются между собой электроэнергетическими, светотехническими и эксплуатационными параметрами и характеристиками.

Тепловые источники света выполняют в виде различных ламп накаливания. Несмотря на многообразие ламп накаливания, все они работают по единому физическому принципу преобразования электрической энергии в оптическое излучение путем нагрева электрическим током вольфрамовой нити до температуры 2200...2800 °С, а также имеют сходные основные конструктивные элементы.

Так как максимум излучения ламп накаливания расположен в инфракрасной части спектра излучения и в целом у них высокое значение энергетического КПД Фл /Рл = 0,7...0,9, то они также находят широкое применение для различных целей инфракрасного нагрева. У специальных инфракрасных ламп температура тела накала меньше, чем у обычных осветительных. Поэтому их срок службы в б... 10 раз больше, чем у осветительных, для которых номинальный срок службы (средняя продолжительность горения) составляет 1000 ч.

Для уменьшения отрицательного влияния распыления вольфрамовой нити накала на показатели лампы накаливания внутрь стеклянной колбы вводят в ряде случаев небольшое количество йода или брома. Такие лампы называют галогенными.

Внешнее отличие галогенных осветительных ламп накаливания состоит в том, что их колба выполнена из кварцевого стекла в виде цилиндрической трубки малого объема, у которой на концах имеются выводы для подключения. Вольфрамовая спираль на поддержках вытянута по оси трубки. Поэтому для нормальной работы галогенные лампы устанавливают только в горизонтальном положении.

Галогенные лампы накаливания по сравнению с лампами накаливания общего назначения имеют большую световую отдачу: 20... 35 лм/Вт против 8...20 лм/Вт. Их номинальный срок службы в 2 раза больше. Световой поток к концу срока службы у галогенных ламп снижается всего на 2% вместо 20% у ламп накаливания общего назначения.

Существенные преимущества ламп накаливания — простота устройства, удобство в эксплуатации и относительно малая стоимость. Мощность ламп накаливания общего назначения от долей ватта до 1000 Вт, галогенных — до 20 кВт.

Обозначение ламп накаливания общего назначения состоит из одной или нескольких букв: В — вакуумная, Г — газонаполненная (86% аргон, 14% азот); БК — биспиральная криптоновая (86% криптон, 14% азот) и т. д. Цифры после буквенного обозначения показывают диапазон уровней питающего напряжения в вольтах, далее номинальную мощность лампы в ваттах и затем порядковый номер разработки. Например, Г-215-225-200 — лампа накаливания газонаполненная моноспиралная на диапазон напряжений 215...225 В номинальной мощностью 200 Вт при среднем расчетном напряжении питания 220 В.

Разрядные источники оптического излучения, в том числе светового, работают по принципу преобразования в оптическое излучение энергии дугового электрического разряда.

В зависимости от давления внутри разрядной колбы различают лампы: низкого (0,1...104 Па), высокого (3×104…106 Па) и сверхвысокого (более 106 Па) давления. От значения рабочего давления в колбе зависят КПД и спектр излучения разрядной лампы.

У разрядных ламп низкого давления энергетический КПД (Фл/Рл) высокий, а световой КПД потока излучения (Фс/Фл) мал, так как значительная часть их излучения сосредоточена в невидимой УФ-зоне спектра. Для разрядных ламп высокого давления наоборот: энергетический КПД меньше, а световой КПД больше.

Так как эффективный световой КПД лампы (Фс/Рл) равен произведению КПД энергетического (Фл/Рл) и светового (Фс/Фл), то это обусловило равноценную применимость обоих типов ламп.

В отличие от ламп накаливания, имеющих сплошной спектр излучения, разрядные лампы обладают ступенчатым или полосовым спектром, состав излучения которого зависит от состава газа и паров металла, наполняющих разрядную колбу (рис.2).

Разрядные лампы низкого давления имеют разрядную колбу 1 в виде стеклянной трубки, на концах которой в цоколь 4 вмонтированы штыревые токоподводы 5 (рис. 2, а). В оба цоколя 4 лампы через стеклянные ножки 2 впаяны оксидированные электроды 3, выполненные в виде моноспирали из вольфрама. У осветительных ламп внутренняя часть колбы из обычного стекла, которое не пропускает УФ-излучение, покрыта слоем люминофора. У ламп для УФ-облучения колбы выполняют из специального кварцевого или увиолевого стекла, которое имеет высокий коэффициент пропускания УФ-излучения соответствующей зоны УФ-спектра. Внутренний объем колбы заполняют аргоном и вводят небольшое количество ртути. Электрический разряд в лампе начинается в атмосфере инертного газа аргона, а затем по мере испарения ртути продолжается в её парах.

 

Устройство (а) и типовая стартерная

Рисунок 2 - Устройство (а) и типовая стартерная схема включения (б) трубчатой разрядной лампы низкого давления:

1 – колба; 2 – стеклянная ножка; 3 – спиральный электрод; 4 – цоколь; 5 – штыревые токоподводы.

  

В люминесцентных разрядных лампах преобразование электрической энергии в видимое излучение происходит в два этапа.

На первом этапе электрический разряд в парах ртути сопровождается УФ-излучением в виде двух монохроматических потоков с длинами волн 253,7 и 184,9 нм, которые сами по себе являются мощными источниками бактерицидного излучения.

На втором этапе возникающее коротковолновое УФ-излучение преобразуется в слое люминофора колбы в видимое. То есть, в излучение с большей длиной волны и, соответственно с меньшей энергией фотонов, так как что часть энергии фотонов теряется в слое люминофора на втором этапе преобразования. Изменяя состав люминофора, изменяют спектральный состав видимого излучения лампы.

Маркировка люминесцентных ламп низкого давления содержит буквенное обозначение, начинающееся с буквы Л (люминесцентная) и второй буквы, раскрывающей особенности ее спектра излучения: Б — белая, ТБ — тепло-белая, ХБ — холодно-белая, Д — дневная, Е — естественная, БЕ — белая естественная, ХЕ — холодная естественная. Ц — с повышенной цветопередачей, УФ — ультрафиолетовая, Ф — фотосинтезная, Р — рефлекторная, У — U – образная, К – кольцевая. После буквенного обозначения следуют цифры, указывающие мощность лампы в ваттах, и через дефис — номер разработки. Например, ЛБР-80 — лампа люминесцентная белая рефлекторная мощностью 80 Вт.

Средняя продолжительность горения осветительных люминесцентных ламп низкого давления составляет 12...15 тыс.ч, светоотдача — 40...80 лм/Вт, мощность — от 3 до 200 Вт (наиболее массовые мощностью 15...80 Вт).

Из-за падающей вольтамперной характеристики электрического разряда для стабилизации режима в цепь разрядной лампы необходимо включать токоограничивающее балластное сопротивление, которое может быть активным (например лампы типа ДРВЛ), индуктивным (большинство ламп), емкостным или их комбинацией. Поэтому в сеть разрядные лампы включают через специальный пускорегулирующий аппарат (ПРА), который обеспечивает зажигание лампы и стабилизацию её дугового разряда в рабочем режиме.

На схеме, показанной на рис. 2. б, представлен типовой вариант включения люминесцентной лампы низкого давления с использованием дроссельного ПРА и лампового стартера тлеющего разряда. Схема содержит осветительную люминесцентную лампу низкого давления EL, индуктивное балластное сопротивление в виде дросселя LL, ламповый стартер VL, помехоподавляюший конденсатор С2 и компенсирующий конденсатор С1, повышающий коэффициент мощности установки с 0,4...0,6 до 0,92...0,95. Сопротивление R предназначено для разряда конденсаторов С1 и С2 после отключения лампы от сети.

Для освещения больших закрытых площадей и открытых территорий наряду с лампами ДРЛ, ДРИ и ДНаТ нашли применение мощные ксеноновые трубчатые лампы типа ДКсТ, которые не нуждаются в токоограничивающем балластном сопротивлении из-за их возрастающей вольтамперной характеристики. Их спектр излучения является сплошным и близким к солнечному, что обеспечивает правильную цветопередачу. Однако, для зажигания ламп ДКсТ требуется сложное пусковое устройство (ПУ), генерирующее высоковольтные импульсы напряжением до 30 кВ. Поэтому лампы ДКсТ, как правило, выпускаются на единичные мощности 6, 10, 20 и более кВт. Их светоотдача составляет 30…35 лм/Вт при нормированном сроке службы 1000 часов.

 

Лекция 12.

Осветительные приборы. Основные методы светотехнического расчета освещения

 

Электрические источники оптического излучения, и в частности света, используют в комплекте с устройствами, которые предназначены для установки и подключения к электропитанию самих источников излучения, для перераспределения их потока излучения и для защиты источников от механических повреждений и неблагоприятных воздействий окружающей среды. Такие устройства, перераспределяющие свет в больших телесных углах до 4p стерадиан называют светильниками, а внутри малых углов – прожекторами. В общем случае эти устройства принято называть - световые приборы.

Основная светотехническая функция светильников и прожекторов - перераспределять световой поток источников, так как они излучают свет практически во всех направлениях пространства. Исключение составляют лишь лампы с зеркальным напылением на внутренней поверхности колбы. Поэтому для изменения направления светового потока в нужном направлении, что является экономически целесообразным, в прожектор или светильник устанавливают отражатель. Лампу, а иногда и отражатель, как правило, защищают от внешних воздействий светопропускающим элементом, который в ряде случаев дополнительно защищают от возможных механических повреждений – защитной сеткой.

По форме кривых силы света (КСС) светильники подразделяются на семь типов. Графические изображения указанных типов КСС представлены на рис.3.

 


Типы стандартизованных КСС

Рисунок 3. Типы стандартизованных КСС:

К – концентрированная;

Г – глубокая;

Д – косинусная;

Л – полуширокая;

Ш – широкая;

М – равномерная;

С – синусная.


Светильник выбирают в зависимости от характера окружающей среды, требований к светораспределению, ограничению слепящего действия, их стоимости и экономичности.

К светильникам, устанавливаемым в сухих отапливаемых помещениях не предъявляют специальных требований. Сельскохозяйственные помещения могут относиться к сухим, влажным, сырым, особо сырым, пыльным, с химически активной средой, жарким, пожароопасным. Поэтому при выборе светильников нужно учитывать степень защиты светильников от окружающей среды помещения.

Светораспределение потока и форма кривой силы света (КСС) являются основными показателями качества освещения и энергетической экономичности установки. Для освещения помещений, стены и потолок которых имеют невысокие отражающие свойства, целесообразно использовать светильники прямого света (П), при высоких отражающих свойствах стен и потолков светильники преимущественно прямого света (Н). Для такого типа помещений используются сетильники с типовыми КСС К, Г или Д. Для дминистративных, общественных и жилых помещений используются светильники рассеянного, преимущественно отраженного или отраженного светораспределения с типовыми КСС М, Л, или Ш. Для высоких помещений с точки зрения минимальной установленной мощности источников света наиболее выгодны светильники с типом КСС К, а по мере уменьшения высоты КСС типа Г и Д, но применение светильников с такими типами КСС приводит к уменьшению расстояния между ними и к увеличению капитальных затрат.

СНиП различают две системы освещения – общее и комбинированное (местное и общее освещение). При любой системе освещения допускаются отклонения расчетной освещенности от нормированной в любой точке поверхности не более чем на +20…-10%.

В сельскохозяйственных и животноводческих помещениях, где нормированная освещенность, как правило, не превышает 50 лк для ЛН и 150 лк для РЛ, рекомендуется использовать общее освещение. При выборе общего освещения предпочтение отдают локализованному, которое обеспечивает повышенную освещенность в главных точках рабочей поверхности, таких как кормовые и навозные проходы, кормушки, стеллажи, верстаки и др. На остальных участках рабочей поверхности помещения освещенность не должна быть меньше 75% от средней. Светильники местного освещения устанавливают на рабочем месте или применяют переносной светильник. Применение только местного освещения в помещениях недопустимо.

В сельскохозяйственных помещениях предусматриваются следующие виды освещения: рабочее освещение двух разновидностей – технологическое и дежурное, а также аварийное и ремонтное.

Технологическое освещение обеспечивает нужную продуктивность животных, птицы, а также условия видения для выполнения обслуживающим персоналом производственных операций. Технологическое освещение располагают в зоне расположения животных.

Рабочее освещение обеспечивает нормированную освещенность во всех точках рабочей поверхности, соответствующее качество, которое определяется отклонениями питающего напряжения, пульсацией светового потока, направлением и спектральным составом света, равномерность освещения и др. Включается только при выполнении персоналом работ в данном помещение.

Дежурное освещение предназначено для наблюдения на объекте в ночное время с минимальной освещенностью. Светильники дежурного освещения выделяются из числа светильников общего освещения. В помещениях для содержания животных они составляют 10%, а в родильных отделениях 15% от общего числа светильников в помещении. Дежурное освещение располагается, как правило, равномерно по проходам производственных помещений. К дежурному освещению может относится наружное освещение входов в помещение.

Аварийное освещение предназначено для продолжения работ или эвакуации. Наименьшая освещенность рабочих поверхностей для продолжения работ принимается в пределах 5% от рабочей освещенности, но не менее 2 лк внутри помещения и 1 лк для наружных площадок. Аварийное освещение для продолжения работ устанавливают в том случае, если отключение освещения может привести к травматизму, нарушению технологического процесса или работы жизненно важных объектов( пожарная, медицинская службы и др.).

В сельскохозяйственном производстве аварийное освещение для продолжения работ необходимо проектировать на следующих объектах: инкубаторы, электрические станции и подстанции, ветеринарные пункты, зернопункты, имеющие протравливатели, сушильные установки.

Для эвакуации должна обеспечиваться освещенность на полу в основных проходах и на ступеньках помещений не менее 0,5 лк и 0,2 лк на открытых площадках. Для аварийного освещения можно использовать только лампы накаливания. Люминесцентные лампы допускается использовать при питании переменным током напряжением не ниже 90% номинального.

Светильники аварийного освещения должны отличаться от светильника рабочего освещения окраской или типом.

Задача светотехнического расчета – определить потребную мощность источников света для обеспечения нормированной освещенности. В результате расчета находят световой поток источника света, устанавливаемого в светильнике. По рассчитанному световому потоку выбирают стандартную лампу. Отклонение светового потока выбранной лампы от расчетного значения допускается в пределах –10…+20%. Если расхождение больше, то необходимо изменить число светильников, их размещение, тип и выполнить перерасчет, чтобы это расхождение укладывалось в допустимые пределы.

В практике светотехнических расчетов наиболее широко применяют точечный метод, метод коэффициента использования светового потока и метод удельной мощности.

Точечный метод используют для расчета неравномерного освещения: общего локализованного, местного, наклонных поверхностей, наружного. Необходимый световой поток осветительной установки определяют исходя из условия, что в любой точке освещаемой поверхности освещенность должна быть не менее нормированной, даже в конце срока службы источника света. Отражение от стен, потолка и рабочей поверхности не играет существенной роли.

Расчет ведется следующим образом:

1. По справочным данным определяют минимальную нормированную освещенность для данной категории помещений.

2. Выбирают тип источника света и светильник.

3. Рассчитывают размещение светильников в помещении.

4. На плане помещения с размещением выбранных светильников намечают контрольные точки. В качестве них на освещаемой поверхности, в пределах которой должна быть обеспечена нормированная освещенность, берут точки с минимальной освещенностью. Такие точки следует брать в центре между светильниками или посередине одной из крайних сторон.(рис. 4,а). Не следует брать точки с минимальной освещенностью у стены или в углах. Если в таких точках есть рабочие места, то освещенность в них можно довести до нормы путем местного освещения или увеличения мощности источников ближайших светильников.

5. Вычисляют условную освещенность в каждой контрольной точке и точку с наименьшей условной освещенностью принимают за расчетную.

6. По справочным данным устанавливают коэффициенты запаса и дополнительной освещенности.

7. Рассчитывают световой поток лампы.

8. Из справочных таблиц выбирают ближайшую стандартную лампу, световой поток которой отличается от полученного расчетного не более чем на - 10…+20%, и определяют ее мощность.

9. Подсчитываю электрическую мощность всей осветительной установки.

На рис. 4 приведены примеры выбора контрольных точек на плане помещения (а) и в вертикальной плоскости (б).

Изображение 37

Схемы к выбору и расчёту освещения в контрольных точках.

Рисунок 4 - Схемы к выбору и расчёту освещения в контрольных точках.


Если размеры источника меньше 0,5Нр (точечный источник света), то в начале рассчитывают условную освещенность в каждой контрольной точке:

Если размеры источника меньше 0,5Нр (точечный источник света), то в начале рассчитывают условную освещенность в каждой

где ei - условная освещенность в контрольной точке от i -го источника света с условным световым потоком 1000 лм, которую определяют по кривым изолюкс или по формуле:

где ei - условная освещенность в контрольной точке от i -го источника света с условным световым

где   ai - угол между вертикалью и направление силы света i -го светильника в расчетную точку (рис. 4,б);

1000 - сила света i -го источника света с условной лампой , световой поток которой равен 1000лм, в направлении расчетной точки.

Численные значения Iai1000 определяются по силе света типовых КСС. Точка, в которой суммарная условная освещенность минимальная, принимается за расчетную.

Световой поток источника света в каждом светильнике рассчитывают по формуле:

Световой поток источника света в каждом светильнике рассчитывают по формуле

где   m = 1,1…1,2 - коэффициент, учитывающий дополнительную освещенность от удаленных светильников и отражения от ограждающих конструкций;

1000 - световой поток условной лампы, лм.

По рассчитанному значению светового потока и табличным данным выбирают тип, размеры лампы и её номинальную мощность Рлн, рассчитывают отклонение табличного светового потока от расчетного:

По рассчитанному значению светового потока и табличным данным выбирают тип, размеры лампы и её номинальную мощность

Метод коэффициента использования светового потока целесообразно применять при расчете общего равномерного освещения горизонтальных поверхностей с учетом отраженных от стен, потолка и пола световых потоков. Значения коэффициентов отражения для различных материалов и покрытий приводятся в справочных данных на характеристики помещений.

Световой поток Ф источника света в каждом светильнике находится по формуле:

Световой поток Ф источника света в каждом светильнике находится по формуле

где   Ен – заданная минимальная освещенность, лк; Кз – коэффициент запаса; S - освещаемая площадь, м2; Z – коэффициент неравномерности равный 1,1 - 1,2; N – общее количество светильников, шт.; hи – коэффициент использования светового потока в относительных единицах, определяется по справочным данным для рассматриваемого помещения.

Для определения коэффициента использования светового потока hи находятся индекс помещения i и коэффициенты отражения поверхностей помещения: потолка - rп, стен -rс и пола (рабочей поверхности) rпр.

Индекс помещения рассчитывают по формуле:

Индекс помещения рассчитывают по формуле

где   А, В – длина и ширина помещения, м; Нр – расчетная высота, м.

По типу светильника, коэффициентам отражения и индексу помещения определяют коэффициент использования светового потока hи в относительных единицах.

По найденному световому потоку, пользуясь справочными данными выбирают типоразмер лампы и ее мощность. Если ближайшие лампы имеют световой поток, отличающийся от расчетного на –10%…+20%, то выбирают лампу с другим световым потоком и уточняют число светильников. Затем рассчитывают мощность всей осветительной установки.

Метод удельной мощности является упрощенным методом коэффициента использования светового потока и рекомендуется для расчета осветительных установок второстепенных помещений и для предварительного определения осветительной нагрузки на начальной стадии проектирования.

Расчетная формула метода:

Расчетная формула метода

где Pлр - расчетная мощность лампы, Вт; N -  количество светильников в помещении, шт; Pуд - удельная мощность общего равномерного освещения, Вт/м2; Sплощадь помещения, м2.

Значение удельной мощности зависит от типа и светораспределения светильника, размеров помещения, коэффициентов отражения стен, потолка и пола, высоты подвеса светильника и выбирается по справочной литературе.

По расчетной мощности лампы Pлр и каталожным данным выбирают типоразмер лампы и её номинальную мощность Pлн так, чтобы выполнялось условие

По расчетной мощности лампы Pлр и каталожным данным выбирают типоразмер лампы и её номинальную мощность Pлн.

  

Лекция 13.

Проектирование и расчет осветительных сетей

 

Для выполнения осветительной сети в зависимости от её назначения и особенностей выполнения могут быть использованы различные виды электропроводок и различные элементы, входящие в её состав.

Открытой электропроводкой называется проводка, проложенная по поверхности стен, потолков, по фермам и другим строительным элементам зданий и сооружений, по опорам и т. п.

Скрытой электропроводкой называется проводка, проложенная внутри конструктивных элементов зданий и сооружений (в стенах, полах, фундаментах, перекрытиях, за непроходными подвесными потолками и т.д.).

Наружной электропроводкой называется электропроводка, проложенная по наружным стенам зданий и сооружений, под навесами и т. п., а также между зданиями на опорах (не более четырех пролетов длиной до 25 м каждый) вне улиц, дорог и т. п. Наружная электропроводка может быть открытой и скрытой.

Струной как несущим элементом электропроводки называется стальная проволока, натянутая вплотную к поверхности стены, потолка и т. п„ предназначенная для крепления к ней проводов, кабелей или их пучков.

Полосой как несущим элементом электропроводки называется металлическая полоса, закрепленная вплотную к поверхности стены, потолка и т. п., предназначенная для крепления к ней проводов, кабелей или их пучков.

Тросом как несущим элементом электропроводки называется стальная проволока или стальной канат, натянутые в воздухе и предназначенные для подвески к ним проводов, кабелей или их пучков.

Коробом называется закрытая полая конструкция прямоугольного или другого сечения, предназначенная для прокладки в ней проводов и кабелей. Короб служит защитой от механических повреждений проложенных в нем проводов и кабелей.

Лотком называется открытая конструкция, предназначенная для прокладки на ней проводов и кабелей. Лоток не является защитой от внешних механических повреждений, проложенных на нем проводов и кабелей. Лотки изготавливаются из несгораемых материалов.

Групповые линии сетей внутреннего освещения должны быть защищены предохранителями или автоматическими выключателями на рабочий ток не более 25 А.

Групповые линии, питающие газоразрядные лампы единичной мощностью 125 Вт и более, лампы накаливания до 42 В любой мощности и лампы накаливания напряжением выше 42 В единичной мощностью 500 Вт и более допускается защищать плавкими предохранителями или автоматическими выключателями на ток до 63 А. При этом ответвления от этих линий длиной до 3 м при любом способе прокладки и любой длины при прокладке в стальных трубах допускается не защищать аппаратами защиты.

Каждая групповая линия, как правило, должна содержать на фазу не более 20 ламп накаливания, ДРЛ, ДРИ, натриевых. В это число включаются также розетки.

Для групповых линий, питающих световые карнизы, панели и т. п., а также светильники с люминесцентными лампами, допускается присоединять до 50 ламп на фазу. Для линий, питающих многоламповые люстры, число ламп на фазу не ограничивается.

В жилых и общественных зданиях на однофазные группы освещения лестниц, этажных коридоров, холлов, технических подполий и чердаков допускается присоединять до 60 ламп накаливания, каждая из которых должна быть мощностью до 60 Вт.

В групповых линиях, питающих лампы мощностью 10 кВт и более, на каждую фазу должно присоединяться не более одной лампы.

На рис. 5 приведена типовая схема электропитания осветительной сети переменного тока от трансформаторной подстанции с первичным напряжением 6 или 10 кВ и вторичным – 380/220 В.

Ввод в помещение осуществляется наружной магистральной линией напряжением ~ 380/220 В, которая может быть воздушной или кабельной.

К вводному щиту помещения подключены по внутренним магистральным линиям (МЛ) осветительные и силовые щиты. В щитах устанавливают защитную и коммутирующую аппаратуру, в качестве которой используют автоматические выключатели, оснащённые соответствующими расцепителями, или комплекты предохранителей с выключателями.

 

Схема электропитания осветительного щита 

Рисунок 5 - Схема электропитания осветительного щита

 

Рекомендуется, чтобы в каждой однофазной группе было не более 20 ламп накаливания, ДРЛ, ДРИ, ДНаТ и розеток, или не более 75 люминесцентных ламп мощностью до 40 Вт или 60 ламп мощностью до 80 Вт включительно. Длина четырёх проводной группы, как правило, не должна превышать 80 м, трёх проводной – 60 м и двухпроводной – 35 м.

Выбор марки провода для проводки осветительной сети определяется условиями окружающей среды, назначением помещения, электро – и пожаробезопасностью, удобством монтажа и эстетическими требованиями. Способ прокладки должен обеспечивать надежность, долговечность, пожарную безопасность, экономичность и по возможности заменяемость проводов.

Открытые электропроводки должны прокладываться в местах, где исключена возможность их механических повреждений. Открытая прокладка незащищенных изолированных проводов со сгораемой изоляцией запрещена. Нельзя применять плоские провода во взрывоопасных помещениях и с химически агрессивной средой, по сгораемым основаниям, для зарядки подвесных светильников, в зрительных залах, клубах, на чердаках и при открытой прокладке. При скрытой прокладке плоских проводов под штукатуркой запрещается заделка проводов растворами, содержащими поташ, милонаф и другие вещества, которые могут разрушать изоляцию.

В общественных, административных, бытовых, лабораторных помещениях, как правило, используют скрытые электропроводки. В производственных и вспомогательных помещениях следует преимущественно применять открытую проводку, выполненную на тросах или тросовыми проводами, кабелями, шнурами и изолированными проводами с размещением на изоляторах, в лотках, коробах, трубах.

Сечения проводов и кабелей выбирают исходя из механической прочности, тока нагрузки и потери напряжения.

В процессе монтажа и эксплуатации электрические провода и кабели испытывают механические нагрузки, которые могут привести к обрыву токоведущих жил. Чтобы этого не произошло, ПУЭ ограничивает минимальное сечение проводов в зависимости от способов прокладки и материала токоведущих жил. Например, согласно ПУЭ в общем случае сечение жил проводов и кабелей, используемых для внутренней электропроводки, должно быть не менее 2,5 мм2  для алюминиевых жил и 1 мм2  для медных, а при прокладке на изоляторах — соответственно 4 мм2 и 1,5 мм2.

Нагрев проводников вызывается прохождением по ним электрического тока. Температура провода зависит от величины этого тока и условий теплоотдачи в окружающую среду. Допустимая температура провода ограничивается классом нагревостойкости его изоляции. Чтобы температура не превысила допустимого значения, в зависимости от класса изоляции, материала жилы провода и способа его прокладки (в воздухе, в трубе, в строительной конструкции, в земле и т. д.), для каждого стандартного сечения согласно табличным данным, приводимых в ПУЭ, ограничивают допустимую силу рабочего тока.

В таблице 1 приведены значения длительно допустимых токов нагрузки (А) для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными (числитель) и алюминиевыми жилами (знаменатель), проложенными открыто и в одной трубе. Такой способ прокладки электропроводки производственных осветительных сетей является наиболее распространённым и достаточно общим для принятия токовых нагрузок в целом при других способах прокладки.


Таблица 1 - Длительно допустимые токи нагрузки (А) для проводов и шнуров с резиновой  и поливинилхлоридной изоляцией с медны-ми (числитель) и алюминиевыми жилами (знаменатель)

Сечение токоведущей жилы,

мм2

Провода, проложенные открыто

Токовые нагрузки, А

Провода, проложенные в одной трубе

два одножильных

три одножильных

четыре одножильных

1

17/-

16/-

15/-

14/-

1,5

23/-

19/-

17/-

16/-

2,5

30/24

27/20

25/19

25/19

4

41/32

38/28

35/28

30/23

6

50/39

46/36

42/32

40/30

10

80/55

70/50

60/47

50/39

16

100/80

85/60

80/60

75/55

25

140/105

115/80

100/80

90/70

35

170/130

135/100

125/95

115/85

50

215/.165

185/140

170/130

150/120

70

270/210

225/175

210/165

185/140

95

330/255

275/215

255/200

225/175

120

385/295

315/245

290/220

260/200

150

440/340

360/275

330/255

-

 

Таким образом, на основании максимального расчётного тока нагрузки (Iр) на рассматриваемом участке сети по табличным данным ПУЭ находится минимально возможное сечение жилы провода (s) из условия его допустимого нагрева, чтобы выполнялось условие:

                                                 Iр £ Iд ,                                  (1)

где  Iд – максимально возможный допустимый ток нагрузки на провод с выбранным минимальным сечением токопроводящей жилы, А;

Iр – максимальный расчётный ток нагрузки на рассматриваемом участке сети (А), который для осветительных сетей с учётом значения коэффициента спроса, равного единице, рассчитывается по максимальной расчётной (установленной) мощности осветительных установок (Ру, Вт) и средневзвешенному коэффициенту мощности (cos j) c учётом фазности (m) электропитания на данном участке:

                                     Iр = Ру /(mUФ cos j),                          (2)

где UФ – фазное напряжение на рассматриваемом участке сети, В.

 

Расчётная схема осветительной сети

 

Рисунок 6 - Расчётная схема осветительной сети

 

С другой стороны, потеря напряжения в проводах зависит от сечения, материала токоведущей жилы, длины провода, силы тока и принятой системы напряжения. Обычно, значение допустимой потери напряжения во внутренней осветительной сети принимается до 2,5 % от номинального, чтобы обеспечить требуемый уровень напряжения у всех потребителей данной сети, рис.5, 6.

Расчет сечения проводов по допустимой потере напряжения производят по формуле:

                                       Расчет сечения проводов по допустимой потере напряжения производят по формуле , (3),                                 (3)

где   P i×l iэлектрический момент нагрузки i – го участка сети, кВт×м;  P i – суммарная мощность нагрузки i – го участка сети, кВт; l i длина i – го участка сети, м;  DU i – принимаемая потеря напряжения на i – м участке сети, %;  С – коэффициент, значение которого зависит от напряжения сети, материала токоведущей жилы и числа проводов в группе данного участка, табл. 2;  cos j - средневзвешенный коэффициент мощности нагрузки.

 

Таблица 2

Номинальное напряжение (В) и система электросети

Значение коэффициента С, (кВт×м)/(мм2×%)

медная жила

алюминиевая жила

380 (3 фазы)

72

44

380/220 (3фазы+N)

72

44

380/220 (2фазы+N)

32

19,5

220 (однофазная)

12

7,40

127 (однофазная)

4

2,46

  36 (однофазная)

0,324

0,198

  24 (однофазная)

0,144

0,088

  12 (однофазная)

0,036

0,022

 

Таким образом, сечения жил проводников на каждом участке осветительной сети определяется током нагрузки (допустимым нагревом) и допустимой потерей напряжения, принятой на данном участке при расчёте по формуле (3). При этом сечение жилы провода должно быть больше или равно сечению, допустимому по условию механической прочности.

В качестве примера запишем формульные выражения для расчёта сечения жилы проводов по допустимой потере напряжения для ввода в щит освещения (Sв) и для магистрали (Sм) на основании расчётной схемы рис.6.

Для этого, исходя из реальной длины участка и значения нагрузки на данном участке сети, следует задаться расчётными значениями потерь напряжения на этих участках DUввод и DUмаг таким образом, чтобы суммарная потеря напряжения (DUввод + DUмаг + DUотв ) не превышала допустимого значения для внутренней проводки, равного DUдоп = 2,5 % от Uн.

В результате для схемы рис.6 получим следующие выражения для заданных участков сети:

В результате для схемы получим следующие выражения для заданных участков сети

Полученные расчётные сечения проводов округляют до ближайших больших (равных) стандартных сечений.

Следующим этапом по справочным таблицам допустимых токовых нагрузок на соответствующие изолированные провода и кабели по расчётному току участка сети определяют необходимое стандартное сечение жилы, исходя из допустимого нагрева провода или кабеля.

Окончательно на каждом участке сети из двух определённых сечений принимается то сечение жилы, которое окажется большим. В этом случае удовлетворяются требования как по допустимой потере напряжения, так и по допустимой токовой нагрузке.

После чего на основании выражения (3), решённого относительно (DU), уточняют действительные потери напряжения на каждом из участков сети и в целом во внутренней проводке помещения. При равномерной нагрузке на участке она может быть заменена суммарной, приложенной в середине участка.

Осветительные щиты выбираются в зависимости от количества групп, схемы соединения, аппаратов управления и защиты, а также по условиям среды, в которых они будут работать. Для сельскохозяйственных объектов рекомендуются щиты типов ОЩВ, ОП с плавкими предохранителями или автоматическими выключателями (автоматами) типа А-3161, АБ-25 и др.

Ток уставки аппарата защиты (предохранителя, автомата) определяется из условия

                                               ³ Iр ,                                        (4)

где — расчетный ток нагрузки участка линии, защищаемого данным аппаратом защиты, А.

Автоматические выключатели имеют, как правило, комбинированные расцепители: тепловой и электромагнитный. При малых токах короткого замыканиях они отключают линию с некоторой временной задержкой за счёт срабатывания теплового расцепителя, которому необходимо определённый интервал времени нагрева. При значительных токах короткого замыкания срабатывает электромагнитный расцепитель (отсечка) и автоматический выключатель отключает аварийный участок сети практически мгновенно.

Номинальные токи аппаратов защиты должны быть не менее расчетных токов защищаемых участков, по возможности близкими к ним и не должны отключать установку при включении ламп. Для этого номинальные токи плавких вставок предохранителей и уставок автоматических выключателей с учетом пусковых токов мощных ламп накаливания и ламп ДРЛ, ДРИ, ДНаТ относительно рабочего тока линии, как правило, завышают в 1,4 раза (для автоматов с комбинированными расцепителями на ток менее 50 А, а также для нагрузки с лампами накаливания) и в 1,2 раза (для ламп типа ДРЛ, ДРИ, ДНаТ с защитой сети плавкими предохранителями).

  

Лекция 14.

Системы топливоснабжения.

Топливоснабжение при твердом и при жидком топливе

 

К числу важнейших энергоносителей относится органическое топливо, являющееся основным источником энергии. В целом по стране около 30% всех топливных ресурсов идет на выработку электроэнергии, 50% - на получение тепловой энергии, остальное - на транспортные нужды и химическую переработку.

Расходуемое на промпредприятиях топливо подразделяют на технологическое и энергетическое. К энергетическому относится топливо, химическая энергия которого используется для получения физической теплоты продуктов горения, а к технологическому - топливо, применяемое также в качестве восстановителя в технологических процессах.

Топливное хозяйство промпредприятия представляет систему устройств и механизмов, предназначенных для приема, хранения, перемещения и первичной обработки топлива перед сжиганием. Система и состав топливного хозяйства, а также условия его работы определяются видом, свойствами и способом сжигания, расходом и способом доставки топлива, а также территориальным расположением топливоиспользующих установок. При этом потери топлива должны быть минимальными, его химические и физические характеристики не должны ухудшаться; первоначальные затраты и эксплуатационные расходы на топливное хозяйство должны быть небольшими.

В топливосжигающих установках (паровые и водогрейные котлы, промышленные печи, теплогенераторы) используется один или два вида топлива. Котельные установки проектируются таким образом, чтобы в их топках можно было сжигать два вида топлива - основное и резервное (или растопочное). Поэтому топливное хозяйство котельной или электростанции представляет собой комплекс оборудования, необходимого для приема, хранения, транспортировки и подготовки к сжиганию различных видов топлива: твердого и жидкого, твердого и газового, жидкого и газового. В отдельных случаях возможно использование в качестве основного и резервного одного вида топлива, например, жидкого и жидкого с самостоятельными топливными трактами.

 

Топливоснабжение при твердом топливе

В мелкие котельные топливо доставляется автомобильным транспортом, в крупные котельные и на топливные электростанции - железнодорожным.

Приемное устройство для топлива на территории крупной котельной или электростанции состоит из одного или нескольких железнодорожных путей 3 (рис. 1). В зимний период вагоны со смерзшимся углем отогреваются в специальных помещениях - тепляках. По мере разогрева вагоны подаются в разгрузочные помещения 4, оснащенные вагоноопрокидывателями. Высыпающееся в бункера или траншеи топливо с помощью питателей подается на транспортер 5 и доставляется на узел первой пересыпки 7, откуда, в зависимости от нужд котельного цеха в топливе, направляется однониточным конвейером 6 на резервный склад 1 или наклонными двухниточными конвейерами 5, укрытыми в галереях, во второй узел пересыпки, совмещенный с дробильным помещением 8, и далее в бункера 17 сырого топлива, расположенные в котельном цехе.

Для уменьшения простоя вагонов (при переполнении бункеров котельного цеха) предусмотрены специальные разгрузочные эстакады 2, которые могут также использоваться для разгрузки неисправных вагонов.

Для измельчения крупных кусков топлива (плит) на тракте топливоподачи до бункеров котлов или на складе уголь подвергается дроблению. Перед дробилками грубого дробления 11 предусматривается установка магнитных сепараторов 9 и 10 для извлечения из топлива металлических предметов, а для удаления древесины (пни, крупная щепа и т.п.) на тракте топливоподачи устанавливаются щепоуловители 12.

После дробилок грубого дробления установлены дробилки мелкого дробления 11а, а перед последними размещаются грохота 13, с помощью которых отделяются мелкие фракции топлива (до 20 мм) с целью уменьшения расхода энергии на дробление. Дробилки выбирают в зависимости от типа топочного устройства и требований к сжигаемому топливу. При слоевом сжигании, как правило, применяют валково-зубчатые или винтовые, при камерном сжигании - молотковые дробилки.

Дробленый уголь транспортером 14 доставляется в котельный цех, взвешивается ленточными весами 15, пересыпается на распределительные конвертеры, доставляющие уголь к каждому котлу, и сбрасывается питателями 16 в бункера сырого топлива 17 отдельных котлов.

Изображение 51

 Рисунок 1. Приемное устройство для топлива на территории крупной котельной или электростанции состоит из одного или нескольких железнодорожных путей

 

Дальнейшая подготовка твердого топлива до подачи ее в топочное устройство котла зависит от способа сжигания (камерное, высокотемпературное или низкотемпературное вихревое, в плотном слое, в кипящем слое), от свойств топлива. На рис. 1 представлена подготовка топлива для сжигания его в виде пыли в камерной топке котла 30.

Подготовка сырого топлива к сжиганию в камерной топке осуществляется в системах пылеприготовления, где оно размалывается в мельницах, подсушивается и подается через горелки в топку. Для сушки применяется горячий воздух, дымовые газы или их смесь.

Различают системы пылеприготовления центральные и индивидуальные. В центральных системах пылеприготовления сушка и размол топлива производятся в отдельно стоящем помещении (в центральном пылезаводе), из которого пыль транспортируется в котельный цех. Наиболее распространены индивидуальные системы пылеприготовления. Они подразделяются на системы прямого вдувания, когда угольная пыль после мельниц сушильным агентом подается в котел, и системы с промежуточным бункером, в которых пыль после мельниц подается в бункера готовой пыли, а из них - в топку (сушильным агентом или горячим воздухом, в последнем случае сушильный агент либо подается в топку через специальные сбросные сопла, либо очищается от угольной пыли и выбрасывается в атмосферу).

При сжигании, например, бурых углей с влажностью до 40% или торфа с влажностью 50% используются индивидуальные схемы пылеприготовления с прямым вдуванием и сушкой горячим воздухом, как это показано на рис. 1. Сырое топливо из бункера 17 питателем 19 подается в мельницу 24, где оно размалывается и одновременно сушится горячим воздухом, подаваемым из воздухоподогревателя 31 по коробу 22, холодный воздух на воздухоподогреватель 31 подается вентилятором 32. 

Температура пылевоздушной смеси за мельницей поддерживается на взрывобезопасном уровне разбавлением горячего воздуха холодным, поступающим по коробам 25 и 26. Первичная сушка топлива производится в специальной трубе - сушилке 21. Шибер 18 и мигалки 20 перекрывают подачу топлива при ремонтах, а также для предотвращения поступления горячего воздуха к питателю 19 и в бункер 17. 

В сепараторе 27 пыль разделяется на мелкие и крупные фракции. Мелкая пыль с сушильным агентом поступает через горелки 29 в топку котла 30. Крупные частицы топлива по трубопроводу 23 возвращаются в мельницу. В горелки 29 подается также вторичный горячий воздух для обеспечения полного сгорания топлива. Предохранительный клапан 28 уменьшает разрушения в случае взрыва угольной пыли в сепараторе 27.

Из-за больших затрат, связанных с приготовлением угольной пыли, применение пылевидного топлива для сжигания ее в факеле в топках котлов теплопроизводительностью менее 84 ГДж/ч (23 МВт) экономически нецелесообразно. В таких котлах используется слоевое сжигание топлива, и топливное хозяйство значительно упрощается.

Топливоснабжение при жидком топливе

Для снабжения потребителей нефтью и нефтепродуктами в России и странах бывшего СССР существуют системы, обеспечивающие добычу, сбор, подготовку и транспортирование сырой нефти, и системы снабжения нефтепродуктами. Первые объединены в Единую нефтеснабжающую систему (ЕНСС), вторые постепенно объединяются в Единую систему нефтепродуктоснабжения (ЕСНП).

Сырая нефть поступает к потребителям: на экспорт, на переработку по специальным технологиям, на нефтеперерабатывающие заводы (НПЗ). В результате переработки сырой нефти получают более 600 видов различных нефтепродуктов, в том числе моторные топлива, остаток от переработки нефти - мазуты различных марок - используется в топливосжигающих установках.

Магистральные нефтепродуктопроводы (МНП) имеют общую протяженность около 25 тыс. км (на 1990 г.); в состав МНП входят наземные сооружения, перекачивающие станции, наливные пункты. По МНП перекачивается около 15% всех нефтепродуктов, более 65% перевозится по железной дороге, остальные - водным и автотранспортом.

Доставка мазута на электростанции и промышленные котельные по трубопроводам производится в случае расположения ТЭС и котельных вблизи от нефтеперерабатывающих заводов или МНП. Автомобильным транспортом мазут доставляется в котельные и небольшие электростанции при незначительных расстояниях от места получения топлива. Доставка потребителю мазута водным транспортом производится только при отсутствии других возможностей, так как несмотря на дешевизну этого способа (в 4...5 раз дешевле по сравнению с другими), сезонность его в связи с замерзанием водоемов вызывает необходимость строительства больших емкостей для хранения топлива в зимний период.

При доставке мазута по железной дороге топливо сливается в приемно-сливные устройства самотеком через нижнее сливное устройство цистерны. Операции при сливе: установка цистерн, заправка в цистерны подогревателей мазута, разогрев и слив мазута в сливные лотки, пропарка и зачистка цистерн, сдача цистерн.

Мазутные хозяйства ТЭЦ и котельных бывают основные и растопочные. Основным мазутное хозяйство называют в случае, когда ТЭС или котельная работают только на мазуте, мазуте и газе или при использовании мазута в качестве резервного топлива. Если мазут используется как растопочное топливо или для совместного сжигания с угольной пылью, то мазутное хозяйство называют растопочным.

В состав мазутного хозяйства входят: приемно-сливное устройство, мазутохранилища (приемные и основные емкости); мазутонасосная (с насосами, подогревателями, фильтрами); паромазутопроводы; система хранения и подачи жидких присадок; система пожаротушения.

Комбинированная схемамазутного хозяйства

 Рисунок 2. Комбинированная схема мазутного хозяйства

Схемы мазутного хозяйства бывают циркуляционные, тупиковые и комбинированные. Комбинированная схема (рис. 2) применяется при использовании любых мазутов и при различных режимах работы котельной, но особенно удобна, когда котельный цех работает на маловязких топливах с переменными нагрузками при частых переходах с мазута на газ. 

Обозначения на рис. 2: 1 - цистерна; 2 - сливной лоток; 3 - приемная емкость; 4 - эстакада; 5 - фильтр тонкой очистки; 6 - мазутомеры; 7 - паровые подогреватели; 8 -клапан сливной; 9 - насос второй ступени; 10 - подогреватель жидких присадок; 11 - фильтр грубой очистки 12 - линия рециркуляции мазута на разогрев цистерны; 13 - фильтр грубой очистки; 14 - конденсатный бак, 15 -линия возврата мазута к насосам; 16- клапан рециркуляции мазута мимо котлов; 17 - насос перекачивающий; 18 - насос-дозатор; 19 - бак жидких присадок; 21 - расходная емкость; 22 - мазутомеры; 23 - клапан рециркуляции мазута; 24 - участок циркуляции; 25 - емкость хранения мазута; 26 - фильтр грубой очистки; 27 - насос первой ступени; ПК - паровой коллектор.

При закрытом клапане 16 котельная работает по тупиковой схеме, при открытом - в работу включается линия рециркуляции. Расход топлива на котлы определяется по разности показаний расходомеров 6 и 22. Прямая и обратная линии изолируются совместно с паровой линией подогревателей мазутного хозяйства. Давление в мазутопроводе регулируется сливным клапаном 8.

Жидкие топлива перед сжиганием должны пройти цикл специальной подготовки.

Первичный подогрев в приемной и основных емкостях осуществляется змеевиковыми подогревателями или открытым паром. Подогревается мазут до температуры перед форсунками от ПО до 150°С.

Фильтрация мазута производится в фильтрах грубой очистки (от 5 до 64 отверстий на 1 см2 фильтрующей поверхности) и тонкой очистки (от 64 до 400 отверстий на 1 см2). Фильтры грубой очистки устанавливаются перед топливными насосами, фильтры тонкой очистки - перед форсунками. Минимальный размер отфильтрованных частиц не должен превышать 5 мкм.

Обработка присадками и обессоливание. Для обессоливания применяют водную промывку мазута. В мазут вводится пресная вода, создается водно-топливная эмульсия, затем промывочная вода, насыщенная солями щелочных металлов, удаляется с помощью центробежных сепараторов. Для обработки мазута в местах потребления используются жидкие присадки, которые снижают интенсивность коррозии, уменьшают количество и прочность золовых отложений на поверхностях нагрева, уменьшают коксообразование.

Обеспечение рабочего давления достигается использованием насосов различного типа и назначения: шестеренные насосы, винтовые насосы типа ЗВ; центробежные консольные насосы типов НК, КНК, НД; разъемные многосекционные насосы типа НПС; насосы-дозаторы типа НД для подачи присадок.

Подогрев мазута перед форсунками производится паром или горячей водой. Для подогрева мазута используют кожухотрубные подогреватели типа ПМ и ПМР и секционные подогреватели типа «труба в трубе» (ТТ).

 

Лекция 15.

Топливоснабжение при газообразном топливе.

Классификация газопроводов

 

Большое количество действующих и вновь открытых крупных газовых и газоконденсатных месторождений позволило создать Единую газоснабжающую систему (ЕГСС) государств бывшего СССР. На топливные нужды расходуется более 90% газа, из них более 30% - на электростанциях. Кроме того, газ экспортируется в страны восточной и западной Европы.

В системе распределения газа (СРГ) могут находиться трубопроводы с различным давлением газа. Ступенчатое изменение давления и распределение газа по трубопроводам различных давлений производится в специальных инженерных сооружениях - газорегуляторных пунктах (ГРП) и газорегуляторных установках (ГРУ).

В зависимости от числа ступеней перепада давления газа в газопроводах, СРГ подразделяются на одно-, двух-, трех- и многоступенчатые:

1) одноступенчатая - СРГ с одним давлением газа в газопроводе; такое решение применяется как при поступлении газа к ГРС по магистральному газопроводу, так и в случае, когда источником газа являются коксогазовый или нефтеперерабатывающий заводы, станции получения сжиженных углеводородных газов (СУГ), биогазовые или газогенераторные установки;

2) двухступенчатая СРГ обеспечивает распределение и подачу газа потребителям двух давлений;

3) трехступенчатая СРГ - подача и распределение газа потребителям осуществляется по газопроводам трех категорий: низкого, среднего и высокого давления;

4) многоступенчатая СРГ обеспечивает подачу газа четырех давлений: высокого I и II категории, среднего и низкого. Эта СРГ используется в крупных городах с большим числом потребителей. Связь между газопроводами различных давлений осуществляется только через ГРП и ГРУ (рис. 3, где: 1 - городские ГРП газопроводов низкого давления; 2 - крупные потребители газа среднего давления; 3 - газораспределительная станция; 4 – магистральный газопровод; 5 - газопроводы высокого давления, до 1,2 МПа; 6 – газопроводы среднего давления; 7 - ГРП газопроводов среднего давления; 8 - распределительные газопроводы и потребители газа низкого давления; 9 - крупные потребители газа высокого давления, 10 - газопроводы низкого давления).

 

Связь между газопроводамиразличных давлений осуществляется только через ГРП и ГРУ

Рисунок 3. Связь между газопроводами различных давлений осуществляется только через ГРП и ГРУ 

 

Газопроводы систем газоснабжения согласно СниП2.04.08.-87 классифицируются так:

1) газопроводы высокого давления I категории (при рабочем давлении газа от 0,6 до 1,2 МПа для природного газа и до 1,6 МПа для СУГ);

2) газопроводы высокого давления II категории (при рабочем давлении газа от 0,3 до 0,6 МПа);

3) газопроводы среднего давления (при рабочем давлении газа от 500 даПа до 0,3 МПа);

4) газопроводы низкого давления (при рабочем давлении газа до 500 даПа; давление газа перед бытовыми приборами не должно быть более 300 даПа).

Классифицируются газопроводы по следующим показателям:

1) по назначению в системе газоснабжения: распределительные, вводы, вводные, продувочные, сбросные, импульсные, межпоселковые;

2) по виду транспортируемого газа: природного газа, попутного газа, СУГ и пр.;

3) по местоположению относительно планировки населенных пунктов: наружные (уличные, внутриквартальные, дворовые, межцеховые) и внутренние (внутри зданий и помещений);

4) по материалу труб: металлические (стальные и др.) и неметаллические (полиэтиленовые и др.).

Распределительные газопроводы обеспечивают подачу газа от источников газоснабжения до газопроводов-вводов, а также газопроводы высокого и среднего давления, предназначенные для подачи газа к одному объекту (ГРП, промышленное предприятие, котельная, ТЭС и т.п.).

Газопровод-ввод - это газопровод от места присоединения к распределительному газопроводу до отключающего устройства на вводе.

Вводным газопроводом является участок от отключающего устройства на вводе (при установке отключающего устройства снаружи здания) до внутреннего газопровода, включая газопровод в футляре, пронизывающий стену здания.

Межпоселковыми являются распределительные газопроводы, проложенные между населенными пунктами.

Наружные газопроводы прокладываются на территории промышленных и коммунальных предприятий, как правило, надземно. Схема межцеховых наружных газопроводов (рис. 4) зависит от взаимного расположения городского распределительного газопровода и предприятия. На схеме элементы газопроводов от 1 до 4 размещены под землей, а начиная с элемента 4 и далее, - надземно. Обозначения на рис. 4: 1 - распределительный (городской) газопровод; 2 - общее запорное устройство; 3 - сборник конденсата; 4 - центральный ГРП; 5 - запорное устройство (в колодце мелкого заложения); 6 - ГРП в шкафном исполнении; 7 - отключающее устройство (в колодце глубокого заложения); 8, -  продувочный трубопровод; 9 - котельная.

Общее запорное устройство 2 располагают вне территории предприятия, как можно ближе к распределительному газопроводу и не менее 2 м снаружи от линии застройки или ограждения предприятия.

За центральным ГРП находятся межцеховые газопроводы, на каждом из которых установлено запорное устройство (при подземной прокладке - в колодцах глубокого или мелкого заложения). Газопроводы на своем протяжении имеют компенсаторы для восприятия линейной деформации при изменении температуры. В колодцах мелкого заложения такие компенсаторы не нужны, так как в этих колодцах газопровод имеет П - образную форму и обладает свойством самокомпенсации.

Схема межцеховыхнаружных газопроводов

 Рисунок 4.  Схема межцеховых наружных газопроводов

 

Фланцевые соединения на газопроводах шунтируются электроперемычками. На подземных газопроводах также имеются: гидрозатворы, устанавливаемые на газопроводах низкого давления в качестве запорной арматуры; контрольные трубки, устанавливаемые в наиболее ответственных местах газопроводов; контрольные проводники для измерения электрического потенциала земля - газопровод; футляры, устанавливаемые в местах пересечения газопроводами фундаментов и подземных коммуникаций. Местоположение сооружений на газопроводах должно быть обозначено табличками-указателями, закрепленными на стенах зданий и сооружений вблизи газопровода или на специальных ориентирных столбиках.

Прокладку надземных газопроводов до 0,6 МПа производят по стенам производственных зданий, с давлением до 0,3 МПа газопроводы можно прокладывать и по стенам общественных и жилых зданий. Вне стен газопроводы прокладывают по колоннам, отдельно стоящим опорам и этажеркам из несгораемых материалов. В местах, предусмотренных проектом, газопроводы должны иметь жесткие (нескользящие) опоры.

Внутренние газопроводы. Ввод газопровода в здание и в места прохождения его сквозь строительные конструкции внутри здания должен выполняться с использованием специальных футляров (из стальных труб). Пространство между газопроводом и футляром заполняется просмоленной паклей, а затем цементным раствором. Между футляром и строительной конструкцией пространство заполняется бетоном.

Газопроводы прокладываются по кронштейнам, прикрепленным к стенам, колоннам, каркасам котлов, по подвескам, прикрепленным к перекрытиям, или крепят с помощью хомутов и крючьев к стенам.

 

Лекция 16.

Системы холодоснабжения. Потребители искусственного холода. Способы производства искусственного холода

Одними из основных потребителей искусственного холода являются нефтяная, газовая и химическая промышленности. При этом потребность в холоде настолько велика, что расход энергии на выработку холода в некоторых случаях начинает сказываться на энергетическом балансе районов расположения промышленных объектов.

Вследствие особенностей технологии в этих отраслях к используемому холодильному оборудованию предъявляют ряд требований. Холодильные машины должны иметь большую холодопроизводительность, высокую степень надежности, достаточно большой ресурс работы; допускать применение дешевых холодильных агентов (основные или побочные продукты на данном комплексе); обеспечивать возможность использования энергетических ресурсов, которыми располагает производство; быть максимально автоматизированными.

Наиболее полно перечисленным требованиям отвечают парокомпрессионные холодильные машины с центробежными и винтовыми компрессорами, а также абсорбционные холодильные машины, которые используют в качестве источников энергии теплоту технологических процессов, вторичные энергетические ресурсы или обратную воду теплоцентралей.

Например, в газовой промышленности широко применяют холод при подготовке газа к транспортировке и в процессе переработки нефтяных и природных газов газоконденсатных месторождений. Обработка газа перед транспортированием методом низкотемпературной сепарации и снижение температуры точки росы газа ниже минимальной температуры в газопроводе позволяют исключить образование в нем жидкости. Основное холодильное оборудование в этом случае - центробежные агрегаты, работающие на пропане, реже - на аммиаке.

Машиностроение и металлургия также являются потребителями искусственного холода. При низкотемпературной обработке сталей требуется осуществлять охлаждение до температур -30...-12О°С. В верхнем интервале температур обычно используют парокомпрессионные машины двухступенчатого сжатия (до -60°С) и каскадные машины (до -80°С), работающие на холодильные камеры или шкафы. В нижнем интервале температур (до -120°С) находит широкое применение охлаждение с помощью жидкого азота.

Восстановление размеров изношенных измерительных инструментов (калибров, скоб) путем перевода остаточного аустенита в мартенсит при принудительном охлаждении позволяет удлинить срок их эксплуатации. При выполнении неподвижных посадок с помощью охлаждения охватываемой детали в ряде случаев удается добиться лучшего качества продукции и повышения производительности труда, чем при запрессовке с нагревом охватывающей детали.

Гибка труб с замороженной в них водой вместо обычно практикуемой (заполнение песком, канифолью и др.) дает хорошие результаты по овальности, радиусу загиба и чистоте внутренней поверхности труб.

В системах воздухоснабжения машиностроительных заводов для осушки сжатого воздуха применяется охлаждение его в специальных холодильных установках; крупными потребителями холода являются установки кондиционирования воздуха, холодильные испытательные камеры.

Широко используется холод в отраслях пищевой промышленности, сельского хозяйства, торговли и общественного питания. В заключение можно упомянуть такие сферы применения искусственного холода, как строительство, опреснение соленой воды, производство сухого и водного льда, искусственные ледяные катки, медицина.

Холодильная установка (станция) представляет собой комплекс машин и аппаратов, используемых для получения и стабилизации в охлаждаемых объектах температур ниже, чем в окружающей среде. Установка состоит из одной или нескольких холодильных машин, оборудования для отвода теплоты в окружающую среду, системы распределения и использования холода.

Централизованный способ производства искусственного холода предполагает применение единого комплекса машин и аппаратов. Установка может включать отдельные агрегатированные холодильные машины или представлять комбинацию холодильного оборудования, имеющего общие или взаимозаменяемые элементы, например блок конденсаторов, ресиверы, коммуникации рабочего тела холодильной машины. В этом случае экономически оправданным является использование системы охлаждения различных объектов промежуточным хладоносителем. Изолированность контура рабочего тела холодильной машины допускает применение аммиака как наиболее дешевого и термодинамически эффективного рабочего тела.

Для отвода теплоты в окружающую среду обычно применяется система оборотного водоснабжения, которая может быть общей с системой водоснабжения промышленного предприятия. В целом централизованный способ производства холода обеспечивает высокую степень надежности при меньшем резерве оборудования и меньшей численности обслуживающего персонала.

При небольших тепловых нагрузках, разбросанности объектов охлаждения, а также при непосредственном включении элементов холодильного цикла в схему основного производства целесообразно использование децентрализованного способа производства холода с непосредственным охлаждением объектов рабочим телом холодильной машины. При этом несколько снижаются энергетические затраты.

В последние годы разрабатываются комбинированные системы холодо- и теплоснабжения, состоящие из установок, которые могут работать как по холодильному, так и теплонасосному циклам. Опыт применения таких систем для теплохладоснабжения зданий при использовании теплоты низкопотенциальных вторичных энергетических ресурсов показал их высокую экономичность.

 

Лекция 17.

Виды систем охлаждения. Способы отвода теплоты от потребителей холода

 

Системы непосредственного охлаждения. В этих системах теплота от объектов отводится непосредственно холодильным агентом, протекающим в приборах охлаждения, располагаемых внутри объектов охлаждения и выполняющих одновременно роль испарителя холодильной машины. При этом агрегатное состояние холодильного агента в приборах охлаждения изменяется (он кипит).

Системы непосредственного охлаждения делятся на безнасосные и насосные - циркуляционные.

По способу подачи жидкого холодильного агента в охлаждающие приборы безнасосные системы охлаждения подразделяются на прямоточные и с. отделителем жидкости.

В прямоточных системах жидкий холодильный агент подается под действием разности давлений конденсации и кипения. Жидкий хладоагент (рис. 1) по трубопроводу 1 из конденсатора поступает к терморегулирующим вентилям 2, где дросселируется и направляется в охлаждающие приборы 3 (испарители). Чувствительный патрон терморегулирующих вентилей укрепляется на всасывающем трубопроводе 4, по которому пар поступает к компрессору. Терморегулирующий вентиль автоматически изменяет подачу жидкости в зависимости от степени перегрева пара на входе в компрессор, обеспечивая тем самым точное дозирование подаваемой жидкости в каждый прибор охлаждения.

В системах охлаждения с отделителем жидкости используется напор Н, создаваемый столбом жидкости (рис. 2). Холодильный агент по трубопроводу 1 поступает к регулирующему вентилю 2 и далее направляется в отделитель жидкости 3. Сухой насыщенный пар отсасывается компрессором через трубопровод 4, а жидкий холодильный агент направляется в приборы охлаждения 5.

В этих схемах не обеспечивается равномерная и надежная подача жидкости в охлаждающие приборы. Во второй схеме большое влияние на температуру кипения оказывает высота столба жидкости. Безнасосные системы не исключают возможности возникновения влажного хода и гидравлических ударов в компрессоре, имеют большую вместимость по холодильному агенту и используются на холодильных установках малой и средней холодопроизводительности.

Изображение 55

 Рисунок 1. Поступление жидкого хладоагента  из конденсатора к терморегулирующим вентилям

 

Насосно-циркуляционные системы применяются преимущественно на крупных холодильных установках. В этих системах жидкий холодильный агент подается в приборы охлаждения под давлением, создаваемым насосом.

На рис. 3 изображена схема с нижней подачей холодильного агента в приборы охлаждения 5 и вертикальным циркуляционным ресивером 3. Жидкий холодильный агент из конденсатора или ресивера по трубопроводу 1 подается в циркуляционный ресивер 3 через регулирующий вентиль 2. Образовавшийся при дросселировании пар отделяется в ресивере и через трубопровод 4 отсасывается компрессором. Жидкий холодильный агент скапливается в нижней части ресивера и направляется к насосу 6, который подает жидкий холодильный агент в приборы охлаждения 5.


Поступление жидкогохладоагента по трубопроводук регулирующему вентилю и далее направляется в отделительжидкости 

 Рисунок 2. Поступление жидкого хладоагента  по трубопроводу к регулирующему вентилю и далее направляется в отделитель жидкости

 

Схема с нижней подачей холодильного агента в приборыохлаждения и вертикальным циркуляционным ресивером

 Рисунок 3. Схема с нижней подачей холодильного агента в приборы охлаждения и вертикальным циркуляционным ресивером

 

Насос подбирают по производительности, обеспечивающей в приборах кратность циркуляции 5-6. Это упрощает распределение жидкости по приборам и увеличивает интенсивность теплообмена. Важным является контроль за уровнем жидкости в ресивере: недостаток жидкости делает неустойчивой работу насоса, а ее избыток может привести к влажному ходу и гидравлическим ударам в компрессоре. Для контроля ресивер снабжают визуальными и дистанционными указателями уровня.

По сравнению с безнасосными, в насосно-циркуляционных системах более простое распределение жидкости между приборами охлаждения, меньшая загрязненность поверхностей теплообмена маслом, меньшая вместимость системы по холодильному агенту, большая безопасность работы и т.п.

Системы охлаждения с промежуточным хладоносителем. В этих системах теплота от объектов отводится промежуточной средой - жидким хладоносителем, протекающим в приборах охлаждения. Здесь он несколько нагревается без изменения агрегатного состояния, а в испарителе, где кипит холодильный агент, охлаждается. Циркуляция хладоносителя в приборах охлаждения осуществляется центробежными насосами. Такие системы охлаждения часто называют рассольными, так как в качестве хладоносителя чаще всего применяют рассол - водный раствор соли.

Системы с промежуточным хладоносителем делят на закрытые и открытые.

Закрытые системы охлаждения (рис. 4) получили наибольшее распространение. Заполнение хладоносителем обеспечивается установкой в самой верхней части системы расширительного бака 8 достаточной вместимости. Жидкий хладоагент 2 подается в испаритель 3, образовавшийся пар 4 отсасывается компрессором. Насос 1 подает хладоноситель в испаритель, где он охлаждается, и затем в приборы охлаждения 5; подача регулируется задвижками 7. Избыточный хладоноситель 9 выпускается в сливной бак. Для удаления воздуха из контура хладоносителя служат вентили 6.

Закрытыесистемы охлаждения

Рисунок 4. Закрытые системы охлаждения

 

Преимуществами схемы являются сравнительно небольшой расход энергии на привод насоса, малая коррозия оборудования, простота отделения воздуха, значительная часть которого удаляется через расширительный сосуд. Недостатком закрытой схемы является возможность замерзания хладоносителя в испарителе, которая возникает при недостаточной концентрации соли в растворе. Такая опасность возникает также при остановке насосов, закупорке труб испарителя загрязнениями.

Схема открытой системы охлаждения приведена на рис. 5. Охлаждающие секции 7 помещены в открытый бак испарителя 6. Отсюда хладоноситель забирается с помощью насоса 1 и подается в нижнюю часть приборов охлаждения 4. Сливу хладоносителя в испаритель по нагнетательному трубопроводу препятствует обратный клапан 2. Воздух из системы удаляется с помощью вентилей 5. При ремонте нагнетательной линии или приборов охлаждения хладоноситель из них выпускают через задвижку 3 в испаритель. При необходимости освобождения бака испарителя хладоноситель через задвижку 8 удаляется в сливной бак.

Изображение 59

Рисунок 5. Схема открытой системы охлаждения

 

Недостатком системы является использование открытого для воздуха оборудования (приборов охлаждения или испарителей), из-за чего отмечаются повышенная коррозия металла и деконцентрация рассолов.

Отвод теплоты от потребителей холода может производиться контактным или бесконтактным способом.

При контактном способе отвода теплоты объект погружается в охлаждающую среду или ею орошается. При этом охлаждающая среда может изменять свое агрегатное состояние (кипеть), если применяют азот, хладоны. 

Теплообмен между объектом и охлаждающей средой происходит конвективным путем и характеризуется высокой интенсивностью, малой продолжительностью процесса, небольшими размерами оборудования при его большой производительности, потребностью в малых площадях при установке оборудования. Недостатком способа является возможность ухудшения качества продукта при непосредственном контакте с некоторыми средами.

В системах бесконтактного охлаждения охлаждение объектов происходит через разделяющую их стенку, а также способом передачи теплоты от охлаждаемых объектов к поверхности теплообмена через подвижную промежуточную среду. В зависимости от интенсивности циркуляции среды различают систему батарейного охлаждения, воздушную систему и смешанную систему охлаждения.

, 7 - Схема при батарейном охлаждении;схема воздушного охлаждения с двухканальным распределениемвоздуха

 Рисунок 6, 7 - Схема при батарейном охлаждении ; схема воздушного охлаждения с двухканальным распределением воздуха


При батарейном охлаждении (рис. 6) теплота отводится из камеры 1, где находится охлаждаемый объект 2, с помощью батарей 3 (пристенных, потолочных) при свободном движении воздуха у батарей. В последнее время батарейную систему охлаждения вытесняет воздушная система из-за большой неравномерности полей влажности воздуха и температуры в камере, а также недостаточной интенсивности теплообмена между воздухом и объектом, воздухом и поверхностью приборов охлаждения.

В воздушных системах охлаждения предусматривается наличие организованного движения воздуха в охлаждаемом помещении. На рис. 7 изображена схема воздушного охлаждения с двухканальным распределением воздуха. Вентилятор 4 отсасывает отепленный воздух из камеры по воздуховоду 1, расположенному под потолком камеры. Проходя через воздухоохладитель 5, воздух охлаждается, осушается и по воздуховоду 6 нагнетается в охлаждаемую камеру. При вентиляции камеры в воздухоохладитель через воздуховод 3 подают наружный воздух, количество которого регулируется шибером 2.

Недостатком воздушных систем являются повышенный расход энергии на привод вентилятора и дополнительная тепловая нагрузка от работающего вентилятора.

 

Лекция 18.

Системы обеспечения предприятий продуктами разделения воздуха

В различных отраслях промышленности широко применяются кислород и другие продукты разделения воздуха - азот, неон, криптон, ксенон и аргон.

Кислород - активнейший окислитель, что предопределило его широкое использование в черной и цветной металлургии, химической промышленности, ракетно-космической технике, машиностроении, медицине и др.

Производство кислорода начиная с 1950 г. каждые 6-7 лет, удваивается и его ежегодный прирост в течение последних 20 лет составляет 12...15%. Более 50% кислорода производится и потребляется в черной металлургии, что позволяет интенсифицировать металлургические процессы и улучшить их технико-экономические показатели. Кислород используют также при выплавке цветных металлов - меди, никеля, цинка, свинца.

Жидкий азот благодаря его нетоксичности, инертности и дешевизне широко используется в качестве криоагента. Значительные количества жидкого азота расходуются при холодных опрессовках и испытаниях кислородного, водородного и гелиевого оборудования, а также в термобарокамерах, имитирующих условия космического пространства.

Важная область применения жидкого азота - пищевая промышленность. Быстрое охлаждение и замораживание пищевых продуктов путем разбрызгивания азота и последующее их хранение в обогащенной азотом атмосфере обеспечивают сохранение вкусовых качеств и товарного вида продуктов в течение длительного времени.

Жидкий азот применяется также в сельском хозяйстве и медицине для хранения биопродуктов.

В криогенных системах жидкий азот широко используют для охлаждения промежуточных экранов изоляции оборудования, а также для предварительного охлаждения больших масс металла сверхпроводящих магнитов, кабелей, трансформаторов и т. д.

В ряде технологических процессов используется газообразный азот. В химической промышленности азот наряду с кислородом служит исходным веществом для производства аммиака, азотной кислоты, метанола, минеральных удобрений и других химических продуктов. Азот применяют также в качестве защитной инертной среды при переработке нефти.

Аргон, неон, криптон, ксенон - инертные газы. Аргон наряду с азотом используется при выплавке специальных сталей и сплавов, в машиностроении - при сварке металлов. Неон, криптон и ксенон находят широкое применение в электроламповой и радиоэлектронной промышленности, а также при проведении исследований в различных отраслях промышленности.

Большинство получаемых при разделении воздуха газов представляют собой криоагенты, т.е. газы с нормальной температурой конденсации в широком интервале температур ниже 120 К. Наиболее экономичные способы их выделения из воздуха (газовой смеси) основаны на низкотемпературных методах - конденсационно-испарительном и в некоторых случаях адсорбционно-десорбционном.

Из конденсационно-испарительных методов в технике низкотемпературного разделения воздуха используется ректификация. Низкотемпературная ректификация отличается от соответствующего высокотемпературного процесса тем, что для ее проведения необходима система криообеспечения.

Назначение этой системы:

1) отвод теплоты из системы разделения воздуха для компенсации теплопритоков и, если это необходимо, сжижение продуктов разделения;

2) обеспечение отвода теплоты в процессе ректификации из конденсатора и подвода теплоты в испарителе.

Для установок, выдающих газообразные продукты разделения воздуха, такой системой служит рефрижератор; для установок, выдающих какие-либо из продуктов в жидком виде - ожижитель.

Система криообеспечения может работать как самостоятельно, на отдельном криоагенте, не связанном с разделяемой смесью (внешнее криообеспечение), так и совместно с системой разделения на разделяемой смеси и продуктах разделения (внутреннее криообеспечение). Существуют и установки, в которых оба способа сочетаются (комбинированное криообеспечение).

Адсорбционно-десорбционные методы разделения основаны на селективной (избирательной) адсорбции при низких температурах отдельных компонентов воздуха на твердых адсорбентах и последующей их десорбции. Используемые для этой цели адсорбенты (активные угли, цеолиты, силикагели, алюмогели) характеризуются большой удельной поверхностью пор (сотни квадратных метров на грамм) и достаточной механической прочностью, чтобы не истираться при многократных циклах адсорбции и десорбции компонентов.

Адсорбционно-десорбционные методы используются как вспомогательные для разделения в тех случаях, когда конденсационно-испарительные методы невыгодны или неприменимы. К ним относится разделение ценных газовых смесей, получаемых в относительно малых количествах (криптон + ксенон, неон + гелий) или таких, в которых содержание одного из компонентов невелико (примеси азота и кислорода в аргоне).

Кроме того, эти методы используются для удаления из воздуха паров воды, диоксида углерода и углеводородов.

В воздухоразделительных установках кроме основных продуктов разделения (кислорода и азота) извлекают и другие составные части воздуха - инертные газы. Все они, кроме аргона, содержатся в воздухе в очень малых концентрациях. В качестве ценных продуктов экономически целесообразно извлечение всех компонентов воздуха, кроме диоксида углерода, гелия и водорода.

Процессы, связанные с ожижением газов, принадлежат к числу весьма энергоемких. Так, например, электрическая мощность установки производительностью 1 т/ч составляет для жидкого кислорода 1200...1500 кВт. Эксергетический КПД таких процессов не превышает 20...25%, т.е. расход энергии в 4-5 раз больше соответствующей идеальной работы.

Характерной особенностью ожижителей в отличие от рефрижераторов является то, что это всегда открытые термодинамические системы. В таких системах вместо цикла совершается квазицикл. Структура ожижителей газов, независимо от видовых особенностей, включает ступени одинакового назначения.

Ступень подготовки рабочего тела (СПТ) предназначена для изотермического сжатия рабочего тела при температуре окружающей среды. Это сжатие может производиться как в одной ступени компрессора, так и в нескольких последовательно включенных ступенях с промежуточным водяным или воздушным охлаждением.

На ступени предварительного охлаждения (СПО) рабочее тело предварительно охлаждается в регенеративном теплообменнике обратным потоком охлажденного рабочего тела.

Ступень основного охлаждения (СОО) обеспечивает ожижение рабочего тела. Основными вариантами СОО являются два: дроссельный и детандерный. Первый из них отличается высоким удельным расходом электроэнергии и применяется в установках малой производительности. Значительно экономичнее вариант с расширением воздуха в детандере.

Ступень использования охлаждения (СИО) включает сепаратор, позволяющий выводить из установки сжиженное рабочее тело, а пар - возвращать в систему.

Воздухоразделительные установки различают по производительности, давлению и составу продуктов разделения.

Воздухоразделительные установки по производительности делят на три группы:

1) малой производительности (30...300 м3/ч) для получения кислорода чистотой 99,2...99,5%, в которых применяется высокое (10...20 МПа) и среднее (3.. .5 МПа) давления;

2) средней производительности (300...4000 м3/ч) для получения кислорода чистотой 95...98%, в которых могут применяться либо два давления - высокое, низкое (0,5...0,8 МПа), либо только низкое давление;

3) большой производительности (более 4000 м3/ч) для получения кислорода чистотой 95...98%, в которых применяется низкое давление.

В состав воздухоразделительных установок входит следующее оборудование: поршневые и турбинные компрессоры и детандеры, кислородные и аргонные насосы, ректификационные колонны, теплообменники, устройства автоматического регулирования и защиты, блоки очистки воздуха.

Поршневые компрессоры применяются на средние и высокие давления при производительностях менее 7800 м3/ч. Турбокомпрессоры могут быть центробежными и осевыми с большой производительностью по воздуху (8000... 170000 м3/ч) при давлениях 0,6...0,8 МПа и в некоторых случаях до 3,5 МПа. Турбокомпрессоры обеспечивают равномерную подачу воздуха, свободного от примеси масла. Они просты в эксплуатации, имеют меньшие размеры и более высокий КПД по сравнению с поршневыми компрессорами.

Поршневые детандеры применяют для высокого и среднего давлений в установках малой мощности. В области малых расходов поршневые детандеры хорошо регулируются и при прочих равных условиях имеют более высокий КПД, чем турбодетандеры. Однако они менее надежны в работе и имеют худшие массовые и габаритные показатели на единицу производительности. В установках большой производительности и низкого давления наиболее широко применяются одноступенчатые радиальные реактивные турбодетандеры, предложенные академиком П. Л. Капицей.

Для перекачки ожиженных газов применяют насосы, отличающиеся от используемых для перекачки обычных жидкостей тем, что они работают при значительно более низкой температуре среды, в связи с чем возрастают потери при нагнетании. Ожиженные газы обычно имеют температуру, близкую к температуре кипения. Поэтому при уменьшении давления в отдельных элементах насоса (клапанах, патрубках, арматуре) из-за гидравлических потерь возможно возникновение кавитации. Для предотвращения этого явления необходимо в значительной мере охлаждать ожиженные газы перед их поступлением в насос.

В установках для разделения воздуха применяют поршневые (плунжерные) и центробежные насосы. Поршневые насосы используют для газификации жидкости (кислорода и азота), наполнения баллонов до обеспечения давления 40 МПа, для подачи газа в сеть потребителя при давлении до 1,5 МПа. Центробежные насосы применяют для перекачки жидкости между ректификационными колоннами в больших количествах при малых напорах.

Очистка воздуха от водяных паров и диоксида углерода производится в специальных адсорбционных блоках. Для обеспечения непрерывной работы в блоке имеется два адсорбера. 

В то время как в одном из баллонов происходит адсорбция примесей, второй подвергается регенерации нагретым азотом, в результате которой происходит десорбция и удаление водяных паров и диоксида углерода. Таким же образом производится осушка кислорода после сжатия его в компрессорах.