Каталог

Помощь

Корзина

Методы разработки вязких и высоковязких нефтей в карбонатных коллекторах

Оригинальный документ?

МЕТОДЫ РАЗРАБОТКИ ВЯЗКИХ И ВЫСОКОВЯЗКИХ НЕФТЕЙ В КАРБОНАТНЫХ КОЛЛЕКТОРАХ

 

Холодное полимерное воздействие на залежь высоковязкой нефти в карбонатных коллекторах. Цель и механизм ведения процесса.

 

Полимерное заводнение заключается в том, что в воде растворяют высокомолекулярный химический реагент - полиакрилламид, обладающий способностью даже при малых концентрациях существенно повышать вязкость воды, снижать ее подвижность и за счет этого повышать охват пластов заводнением.

При концентрации полимера в растворе от 0,01 до 0,1 % вязкость его увеличивается до 3-4 мПа*с. Это приводит к такому же уменьшению соотношения вязкостей нефти и воды и сокращению условий прорыва воды по неоднородным пластам. В процессе фильтрации полимерных растворов в пористой среде они приобретают кажущуюся вязкость, которая зависит от размеров каналов фильтрации и скорости перемещения раствора полимера, и может  в 10-20 раз превышать величину, измеренную вискозиметром. Часть полимера адсорбируется на поверхности каналов фильтрации, снижая их проницаемость, а в связи с тем, что раствор поступает сначала в наиболее проницаемые пропластки, это явление способствует выравниванию профиля проницаемости пород пласта. Из-за адсорбции активного вещества вытеснение перед фронтом раствора полимера образуется вал пластовой воды, а затем обедненного раствора. С увеличением солености и уменьшением проницаемости пласта адсорбция усиливается. Величина адсорбции составляет 0,15-0,75 кг/м3 пористой среды.

Ухудшение работы полимерного раствора при сильной адсорбции активного вещества приводит к большому отставанию фронта полимерного раствора от фронта вытеснения нефти водой. Вследствие этого значительная часть нефти вытесняется неактивной водой, что приводит к меньшей нефтеотдаче пласта.

 

Циклическое внутрипластовое полимерно-термическое воздействие (ЦПТВ).

 

Для совершенствования технологии термополимерного воздействия и уменьшения расхода полиакриламида создана новая технология воздействия на сложнопостроенную залежь с нефтями повышенной и высокой вязкости – циклическое внутрипластовое полимерно-термическое воздействие (ЦВПТВ). 

Технология термополимерного воздействия (ТПВ) предусматривает создание в пласте оторочки горячего полимерного раствора, нагретого на поверхности, с последующим ее продвижением по пласту закачкой необработанной холодной или горячей водой. 

Однако плохие коллекторские свойства (низкие проницаемость и пористость) многих нефтяных месторождений и в связи с этим малая приемистость нагнетательных скважин при ограниченных температурах нагрева полимерного раствора (не более 100º С) не всегда позволяют создавать в пласте оторочку горячего полимерного раствора нужной температуры. С учетом этого было обосновано, что целесообразно нагревать раствор полимера не в поверхностных условиях, а в пласте, прогрев предварительно пласт, нагнетая в него теплоноситель. 

Теплоноситель (пар, горячая вода) не подвержен температурной деструкции и его можно нагревать на поверхности до более высокой температуры, чем раствор полимера. Приемистость пласта для теплоносителя выше, чем для раствора полимера. Лабораторными исследованиями доказано, что эффективность процесса по вытеснению нефти из пласта выше, если теплоноситель и холодный раствор полимера закачивать в пласт циклическими оторочками.

Данная технология разработки нефтяной залежи предусматривает закачку через нагнетательные скважины последовательно расчетного количества теплоносителя, холодного полимерного раствора и на завершающей стадии закачку воды c температурой не ниже пластовой температуры. Механизм интенсификации добычи нефти и увеличения нефтеизвлечения с применением технологии ЦВПТВ следующий.

При обычном полимерном воздействии закачиваемый раствор полиакриламида проникает, прежде всего, в наиболее проницаемые зоны пласта и приводит к их частичному закупориванию и повышению фильтрационного сопротивления. Закачиваемая в последующем вода обтекает закупоренные зоны и вытесняет нефть из менее проницаемых зон пласта. За счет этого увеличивается охват пласта процессом вытеснения и возрастает нефтеизвлечение.

Изложенный механизм вытеснения нефти осуществляется на сравнительно небольшом (10–15 м) удалении от забоя нагнетательной скважины, поскольку закупоривание высокопроницаемых зон препятствует проникновению вязкого (10–15 мПа·с) холодного раствора полимера в более удаленные зоны пласта.

При закачке теплоносителя (в технологии ЦВПТВ) в нагнетательные скважины в пласте создается нагретая зона. При последующей закачке холодного раствора полиакриламида он, проходя через разогретую зону пласта, нагревается, вязкость его при этом снижается (до 2–3 мПа·с), и нагретый раствор ПАА проникает не только в высокопроницаемые зоны пласта, но и в менее проницаемые, вследствие чего происходит более полный охват пласта воздействием нагретым раствором полимера, чем при холодном полимерном воздействии.

В данной технологии используются водорастворимые полимеры, не способные отвердевать в пластовых условиях. Чередование закачиваемых оторочек теплоносителя и холодного раствора полимера предусматривает поочередное прогревание пласта и полимерного раствора за счет накопленного тепла в пласте. При этом происходит опережение фронта концентрации полимера, то есть превышение радиуса фронта концентрации полимера в пласте по отношению к радиусу фронта температуры. За счет этого обеспечивается вытеснение нефти раствором полимера не только в прогретой зоне пласта, но и за ее пределами.

При продвижении раствора полимера по пласту он охлаждается за счет отбора тепла минеральным скелетом пласта, естественных теплопередач в кровлю и подошву пласта. Однако он охлаждается, уже проникнув не только в высокопроницаемые зоны пласта, но и в менее проницаемые, в которые он может проникнуть только в нагретом состоянии, то есть в состоянии сниженной вязкости. Охладившись, полимерный раствор временно теряет подвижность.

Нагнетаемый в пласт во второй оторочке теплоноситель выполняет две функции: вытесняющего агента и теплоносителя. Поскольку прогрев пласта происходит во времени, то теплоноситель, имея значительно меньшую вязкость, чем даже нагретый раствор полимера, сначала встречает преграду в виде «набравшего» вязкость (остывшего) раствора полимера в заполненных им зонах, обходит эти зоны через низкопроницаемые участки, нагревая и вытесняя оттуда нефть. В то же время, по мере закачки теплоносителя в пласт, постепенно нагревается и раствор полимера, снижается его вязкость, он приобретает подвижность и снова начинает продвигаться по пласту, высвобождая высокопроницаемые зоны для продвижения по ним нефти, притекающей из низкопроницаемых зон под действием теплоносителя.

После промыва высокопроницаемых и низкопроницаемых зон вновь возникает потребность в кальматации промытых зон.

Для этого вновь закачивается раствор полимера, и так далее. Значительная эффективность данного процесса достигается за счет того, что раствор полимера проходит не только по прогретой зоне, но и проникает в непрогретые зоны пласта. В непрогретой зоне раствор полимера охлаждается, проникая при этом лишь в наиболее проницаемые зоны и блокируя их. При этом происходит вытеснение нефти из этих зон, а вследствие повышения вязкости раствора полимера по мере его охлаждения в этих участках происходит как бы «запирание» потока раствора полимера, а в прогретой зоне он проникает в менее проницаемые области.

Цикличность закачки в пласт предусматривает цикличность нагрева и охлаждения полимерного раствора и, следовательно, цикличность изменения его вязкости, то есть проникающей и закупоривающей способности в пласте. Происходит благоприятное саморегулирование воздействий рабочих агентов по всему объему пласта, за счет чего обеспечивается интенсификация добычи нефти.

Для получения наиболее результативных показателей необходимо строго выдерживать заданные (расчетные) технологические параметры процесса ЦВПТВ: температура, темп нагнетания и продолжительность закачки теплоносителя и раствора полимера в каждом цикле. Температура прогретой зоны пласта не должна превышать температуру начала термодеструкции полимера (100ºС) и в то же время должна соответствовать эффективной температуре. За эффективную температуру принимается температура, дальнейшее повышение которой не приводит к существенному снижению вязкости нефти в пластовых условиях для данного месторождения.

 

Импульсно-дозированное воздействие (ИДТВ) на пласт.

 

Сущность технологии ИДТВ заключается в циклическом попеременном вводе в пласт через нагнетательные скважины теплоносителя и холодной воды (с формированием волнового теплового фронта) в строго расчетных пропорциях с созданием в пласте «эффективной» температуры эф T. Основное преимущество механизма ИДТВ над известными способами паротеплового воздействия (ПТВ) и воздействия горячей водой (ВГВ) состоит в том, что в технологии ИДТВ при многократном повторе расчетных циклов «пар–холодная вода» активизируется вытеснение нефти из поровых блоков (матриц) трещиновато-порового пласта, что в целом приводит к увеличению нефтеизвлечения из залежи.

Важным преимуществом импульсно-дозированного теплового воздействия является энергосбережение, которое достигается за счет ограничения объема вводимого в пласт теплоносителя уровнем прогрева пласта до так называемой «эффективной» температуры, определяемой по кривой зависимости вязкости нефти от температуры. 

Понятие «эффективная температура» впервые обосновано для тепловых методов и имеет принципиальное значение. Эффективная температура ( эф T ) – это температура, выше которой дальнейшее снижение вязкости нефти происходит незначительно. 

Особый циклический режим нагнетания и энергосбережение, присущие технологии ИДТВ, позволили преодолеть установленный ранее «барьер» 700–800 м в качестве предельной глубины залегания залежей вязкой нефти для применения термических методов.

При ИДТВ в периоды нагнетания импульсов холодной воды парогенераторные установки используются для теплового воздействия на других элементах залежи, что позволяет интенсифицировать охват пласта тепловым воздействием и увеличивать добычу нефти.

При использовании ИДТВ на 25% уменьшаются капитальные вложения по сравнению с ВГВ, а эксплуатационные затраты –на 27%. Себестоимость добычи нефти с учетом конечного нефтеизвлечения становится близкой к заводнению. При ИДТВ достигается увеличение коэффициента нефтеизвлечения (для Гремихинского месторождения до 0,37 по сравнению с естественным режимом – 0,06, заводнением – 0,12 и технологией ВГВ – 0,27). Расход теплоносителя при ИДТВ составляет 3,4 т на извлечение одной тонны нефти, а при воздействии горячей водой (ВГВ) – 6,4 т.

 

Импульсно-дозированное тепловое воздействие с паузой (ИДТВ(П)).

 

Сущность технологии ИДТВ(П) заключается в том, что при циклической закачке расчетных объемов теплоносителя и холодной воды при ИДТВ на этапе нагнетания воды осуществляются периодические остановки процесса (паузы) (патент РФ № 1365779 «Способ разработки залежи высоковязкой нефти» (технология ИДТВ(П)), приоритет от 10.11.85г. (В.И. Кудинов, В.С. Колбиков и др.)).

Продолжительность каждой паузы равна времени восстановления пластового давления в скважинах при их остановке или смене режима эксплуатации, а суммарная продолжительность остановок в цикле не должна превышать времени, необходимого для закачки в пласт 10–15% объема воды в данном цикле.

ИДТВ(П), в отличие от ИДТВ, позволяет активизировать не только внутрипластовые термокапиллярные и термоупругие процессы, но и проявлять гидродинамические упругие силы между нефтенасыщенными блоками малой проницаемости и высокопроницаемыми разностями окружающих пород (каналами активной фильтрации). В результате достигается повышение охвата коллекторов вытеснением и, как результат, увеличение нефтеизвлечения.

Промышленное внедрение этой технологии осуществляется на Гремихинском месторождении с 1990 года по настоящее время.

ИДТВ(П), обладая всеми положительными качествами технологии ИДТВ, обеспечивает нефтеизвлечение в неоднородном низкопроницаемом пласте до 40%, из которых почти 10% являются эффектом использования пауз. Технология ИДТВ(П позволяет снизить удельный расход теплоносителя на одну тонну добываемой нефти с 6,4 т/т при использовании технологии с непрерывной закачкой теплоносителя (ВГВ) до 3,1 т/т при ИДТВ(П).

Несмотря на явные преимущества технологий ИДТВ и ИДТВ(П), они имеют следующие недостатки:

– необходимо применять плотные сетки скважин, что приводит к высоким капитальным вложениям;

– каждая нагнетательная скважина обеспечивает воздействие только на определенные запасы (участки) нефти;

– технологии нагнетания теплоносителя в центральные нагнетательные скважины неизбежно оставляют значительные «целики», не охваченные воздействием;

– теплоноситель, в течение длительного времени прокачиваемый через скважину, выполняет на небольшой части своего пути малоэффективную работу как агент вытеснения, теряя при этом свое ценное качество – тепло.

С целью устранения отмеченных недостатков и дальнейшего совершенствования технологических процессов теплового воздействия на залежи высоковязких нефтей коллективом авторов (В.И. Кудинов, В.С. Колбиков и другие) создан новый способ теплоциклического воздействия на нефтяной пласт (ТЦВП).

 

 

Термоциклическое воздействие на пласт (ТВПТВ).

 

Технологическая сущность теплоциклического воздействия на пласт заключается в нагнетании заданного (найденного расчетным путем, в зависимости от схемы размещения скважин и геологической характеристики участка залежи) количества теплоносителя в данный элемент (участок) залежи через паронагнетательную и три добывающие нефтяные скважины, сгруппированные через одну в 7-точечном элементе скважин. Нагнетание теплоносителя в паронагнетательную скважину (расположенную в центре 7-точечного элемента скважин) ведется постоянно, в режиме ИДТВ(П), а в добывающие – циклически, с переменой их функций по закачке теплоносителя в режиме ИДТВ и отбору нефти (жидкости).

В технологии ТЦВП реализуются следующие технические и технологические приемы:

– определяется расчетное необходимое количество теплоносителя для данного элемента залежи;

– рассчитывается распределение теплоносителя между нагнетательной (центральной) и добывающими скважинами, составляющими элемент теплового воздействия;

– определяется темп нагнетания теплоносителя в данный элемент с последующим распределением между паронагнетательной и добывающими скважинами;

Один цикл ТЦВП состоит из трех технологических этапов:

1-й этап – нагнетание теплоносителя одновременно через центральную нагнетательную (НС) и добывающие (ДС) скважины данного элемента, расположенные через одну в режиме ИДТВ(П), отбор нефти осуществляется через оставшиеся (через одну) добывающие скважины

2-й этап – отличается от первого тем, что добывающие скважины меняются функциями. Добывающие три скважины, в которые закачивался теплоноситель, переводятся под добычу нефти, а нефтедобывающие три скважины переводятся под закачку теплоносителя

3-й этап – нагнетание теплоносителя осуществляется только через центральную нагнетательную скважину (НС), а из всех добывающих скважин осуществляется отбор нефти (жидкости) Циклы повторяются заданное количество раз. После завершения всех циклов ТЦВП переходят к завершающей стадии разработки элемента. На этой стадии центральная нагнетательная скважина (НС) переводится под нагнетание холодной или нагретой воды для проталкивания остаточной тепловой оторочки, а все добывающие скважины переводятся в режим эксплуатации. Технология ТЦВП позволяет исключить ряд недостатков, имеющихся в других известных тепловых технологиях.

Основные преимущества новой технологии ТЦВП следующие:

– ускоряется процесс рассредоточения ввода теплоносителя в продуктивный пласт, в результате чего повышается темп теплового воздействия и тепловая эффективность процесса;

– повышается продуктивная характеристика добывающих скважин, что приводит к интенсификации добычи нефти и повышению темпа выработки запасов нефти;

– повышается охват коллектора тепловым воздействием и, как  результат, повышается конечная выработка запасов нефти;

– создаются условия для применения более редких сеток скважин, за счет чего значительно снижаются капитальные вложения.

Промышленные испытания технологии ТЦВП проведены в течение длительного времени (1988–2004 годы) на Гремихинском месторождении в Удмуртии. Результаты этих испытаний показывают, что после теплоциклического воздействия значительно повышаются дебиты скважин по нефти (в 1,3–7,0 раза от исходного) и по жидкости – 2,0–4,5 раза. Эффект прироста дебита нефти по добывающим скважинам обеспечивает сравнительно быструю компенсацию «потерь» добычи нефти, происходящих при переводе скважин с добычи нефти на процесс нагнетания теплоносителя, с последующим получением чистого экономического эффекта.

Создан еще один способ разработки нефтяных месторождений теплоносителями, который сочетает в себе качества технологий «тепловых оторочек», комбинированного воздействия на пласт через систему нагнетательных и добывающих скважин, циклического воздействия на пласт теплоносителем и нагнетаемой водой. (Патент РФ №2067165 «Способ разработки нефтяного месторождения». (Технология больших треугольников), приоритет от 23.12.92 г. (В.И. Кудинов, В.С. Колбиков, Н.В. Зубов, М.И. Дацик).) Сущность предложенного способа для случая разбуривания залежи по равномерной треугольной сетке заключается в следующем:

1) формируют укрупненные 10-точечные площадные элементы теплового воздействия – «большие треугольники» с девятью равномерно расположенными по периметру скважинами и одной скважиной в центре большого треугольника;

2) нагнетательные скважины располагают по вершинам большого треугольника, остальные семь скважин – добывающие;

3) разработку элемента осуществляют методом теплоциклического воздействия, в котором закачку теплоносителя и отбор продукции ведут по циклам;

4) каждый цикл воздействия на пласт осуществляют в три этапа. На первом этапе теплоноситель закачивают в нагнетательные скважины, и одновременно в три (через одну) из шести добывающих скважин, расположенных на сторонах треугольника, отбор продукции ведется из оставшихся четырех добывающих скважин; второй этап повторяет первый, за исключением того, что добывающие скважины, расположенные по сторонам треугольника, меняются функциями переводом их с режима нагнетания в режим отбора и наоборот; на третьем этапе закачку теплоносителя ведут только через нагнетательные скважины, отбор продукции ведут из центральной добывающей, а остальные скважины останавливают;

5) циклы теплового воздействия повторяют 3–5 раз до полного завершения закачки в пласт расчетного количества теплоносителя;

6) переходят на режим проталкивания тепловой оторочки от периферии к центру треугольника путем нагнетания ненагретой воды в нагнетательные скважины и отбора продукции из всех добывающих скважин.

Порядок осуществления способа и значение каждой операции в технологическом процессе следующие:

1. Определение потребного количества теплоносителя. Как и в любой другой технологии, предварительно расчетным путем определяют общее количество теплоносителя Qp , необходимого для эффективного прогрева элемента воздействия (в нашем случае – «большого треугольника»).

2. Распределение теплоносителя, закачиваемого в пласт через нагнетательные и добывающие скважины.

В схеме «большой треугольник» общее количество теплоносителя Qp вводится в пласт как через нагнетательные, так и через добывающие скважины. Добывающие скважины, расположенные по вершинам правильного шестиугольника, «обслуживают» внутреннюю площадь, составляющую 2/3 площади всего элемента. Каждая нагнетательная скважина, расположенная на вершине треугольника, действует на элемент разработки лишь в секторе с углом 60°. Следовательно, только шестая часть теплоносителя, закачиваемого в нагнетательную скважину, расходуется на прогрев данного элемента разработки. Для выполнения условия нс ΣQ 1/3Qp необходимо закачать в каждую из нагнетательных скважин теплоносителя в объеме нс Q 2/3Qp .

Аналогично для добывающих скважин, расположенных на сторонах треугольника, сектор обслуживания элемента составляет угол 180, и только половина объема теплоносителя, закачиваемого в эти скважины, расходуется на прогрев элемента. Следовательно, для выполнения условия дс ΣQ 2/3Qp необходимо закачать в каждую из добывающих скважин теплоносителя в объеме дс Q 2/3Qp .

Таким образом, отношение объемов закачки в нагнетательные и добывающие скважины составляет нс дс Q 3Q , т.е. в нагнетательные скважины необходимо закачивать теплоносителя в 3 раза больше, чем в добывающие.

4. Выбор количества циклов и объемов закачки теплоносителя в циклах.

Количество циклов n в термоциклическом процессе предусматривается в пределах 3–5 циклов.

Выбрав n, определяют объемы нагнетания по циклам:

Ц ΣQнс2/3nQp и ц дс ΣQ 2/9nQp .

5. Организация режима термоциклического процесса.

Каждый отдельный цикл воздействия состоит из трех этапов.

Продолжительность цикла по времени определяется заданием темпа нагнетания теплоносителя в отдельную скважину – q:

Ц нс tQ /q.

Продолжительность этапа составляет

э ц t 1/3t.

На первом этапе (в течение э t) теплоноситель закачивают в нагнетательные скважины и три добывающие (через одну) в количестве э Q2/9Q n pна каждую скважину, добычу продукции осуществляют через оставшиеся четыре скважины.

На втором этапе той же продолжительности теплоноситель в тех же объемах закачивают в нагнетательные скважины и три уже другие добывающие скважины с переводом их в режим нагнетания, добычу продукции осуществляют через оставшиеся четыре скважины.

На третьем этапе (в течение э t ) теплоноситель в том же количестве на скважину закачивают только в нагнетательные, отбор продукции ведут из центральной добывающей скважины, остальные добывающие скважины останавливают.

6. Организация завершающей стадии разработки элемента.

После того как завершена закачка потребного количества теплоносителя, переходят к известному режиму проталкивания тепла к добывающим скважинам путем нагнетания в пласт ненагретой воды. Потребное количество ненагретой воды определяется обычно из условия, чтобы суммарный объем нагнетания вытесняющего агента составлял 2–3 объема пор пласта элемента.

Закачку ненагретой воды осуществляют через нагнетательные скважины, добывающие скважины переводят в режим отбора.

Выбор «большого треугольника» в качестве характерного элемента разработки и размещения нагнетательных скважин на вершинах элемента обеспечивают переход к сетке скважин, в которой существенно увеличивается отношение числа добывающих скважин к числу нагнетательных – доб наг N /N .В схеме «больших треугольников» такое отношение равняется 8, а это означает, что в целом по залежи число нагнетательных скважин сокращается более чем в два раза по сравнению со схемой 7-точечных элементов.

Таким образом, предлагаемые схемы размещения скважин приводят к существенному сокращению капитальных затрат на строительство специальных нагнетательных скважин (обычно стоимость строительства нагнетательной скважины в 1,5–2 раза выше стоимости добывающей скважины).

Организация теплоциклического воздействия в том порядке, как это описано выше, призвана обеспечить высокий охват элемента разработки как тепловым воздействием, так и гидродинамическим.

Во-первых, если закачку теплоносителя вести только через нагнетательные скважины, то эффекта высокого охвата элемента тепловым воздействием получить не удается. Поэтому и возникла идея распределения потребного количества теплоносителя Qp на нагнетательные и добывающие скважины, расположенные на сторонах треугольника, т.к. в этом случае в режиме отбора остается только центральная скважина. В  этом случае противонаправленные потоки от скважин мешали бы развитию процесса прогрева и вытеснения.

Было найдено обоснование, что добывающие скважины можно использовать в режиме нагнетания через одну–три скважины в режиме нагнетания и через три – в режиме отбора.

Однако если вести процесс закачки через нагнетательные и три (через одну) добывающие скважины длительно, то возникает опасность быстрого прорыва теплоносителя в ближайшие добывающие скважины и нарушается равномерность охвата вытеснением по площади.

Поэтому предложен теплоциклический процесс, в котором каждый из циклов нагнетания теплоносителя призван обеспечить как равномерность охвата элемента прогревом, так и симметричность потоков вытеснения.

Достигается это тем, что на первом этапе цикла формируются направления потоков тепла и жидкостей в сторону ближайших добывающих скважин и центра треугольника. На втором этапе – в сторону уже других добывающих скважин и центра.

В результате имеет место выравнивание фронтов прогрева и вытеснения относительно линии добывающих скважин. На третьем этапе цикла путем остановки добывающих скважин достигается проталкивание тепла и фронта вытеснения к центральной скважине.

Циклы повторяются до полного завершения ввода теплоносителя в элемент разработки.

Обычно значение Qp большое, и если его рассчитать только на один цикл, то этапы циклов будут длительными, в каждом этапе произойдут прорывы вытесняющего агента в добывающие скважины. Здесь весьма важное значение имеет другая причина.

Многоцикловой процесс связан с многократными сменами в пласте направлений тепловых и гидродинамических потоков, что благоприятно влияет на увеличение нефтеизвлечения.

К моменту завершения циклов значительная площадь элемента уже будет находиться под тепловым воздействием – это зоны между нагнетательными скважинами и ближайшими добывающими, обширная зона теплового пояса вдоль периметра шестиугольника, зона проникновения тепла к центру элемента Завершение охвата элемента тепловым воздействием достигается путем проталкивания тепловой оторочки к центральной скважине нагнетанием ненагретой воды через нагнетательные скважины.

Предложенный способ позволяет увеличить коэффициент охвата элемента разработки тепловым воздействием почти до единицы или с учетом неоднородности коллекторов объекта –до 0,85–0,95. Следует отметить, что коэффициент гидродинамического и теплового охвата для обращенных площадных элементов разработки (5-, 7-, 9-точечных) обычно не превосходит 0,7–0,75.

Высокий охват тепловым воздействием непосредственно приводит к увеличению коэффициента нефтеизвлечения, поскольку с увеличением теплового охвата гидродинамический охват может только увеличиться.

Предлагаемый способ разработки обеспечивает также интенсификацию добычи нефти.

В процессе термоциклического воздействия добывающие скважины попеременно работают то в режиме нагнетания теплоносителя, то в режиме отбора нефти (жидкости). Следовательно, в каждом цикле имеет место глубокая тепловая обработка призабойных зон скважин, которая, как известно, применяется для интенсификации добычи нефти.

Предлагаемый способ разработки может быть организован таким образом, что в каждом из циклов нагнетание теплоносителя в скважины (как нагнетательные, так и добывающие) осуществляют не непрерывно, а в режиме чередования с порциями ненагретой воды по методу ИДТВ.

  

Технология приготовления полимерного раствора для закачки в пласт.

 

Полимерные растворы обычно применяют в виде оторочек размером  25-50 % от объема пор. Размер оторочки, тип полимера и его концентрация в растворе должны выбираться исходя из неоднородности пласта, микронеоднородности пористой среды и солевого состава пластовой воды. 

При перемешивании полимерных растворов с пластовой водой происходит разрушение их структуры и снижение вязкости. В случае высокой минерализации воды концентрация полимера в растворе должна быть в 2-3 раза выше.

Давление для нагнетания для полимерного раствора всегда выше, чем при обычном заводнении, чтобы обеспечить необходимые  или аналогичные темпы разработки, вследствие увеличения вязкости, вытесняющего агента и возникновения дополнительных фильтрационных сопротивлений. По этой причине полимерное заводнение может оказаться технически неосуществимым в слабопроницаемых пластах.

 


Термополимерное воздействие на залежь высоковязкой нефти в карбонатных коллекторах. Цель и механизм ведения процесса.

 

Термополимерное воздействие отличается от обычного полимерного заводнения тем, что раствор полимера предварительно нагревается на поверхности до температуры 90оС, а затем нагнетается в пласт.

Нагрев полимерного раствора приводит к его частичной деструкции и потере свойств, приводящих  к увеличению фильтрационных сопротивлений при движении его в пористой среде. 

Энергия, расходуемая на нагрев полимера тратится впустую, так как нагретый раствор поступает в пласт уже значительно остывшем из за больших потерь тепла при транспортировке его к забою скважины. При остывании в призабойной зоне пласта вязкость такого раствора может увеличится на 1-2%. 

В то же время, из за уменьшения скорости фильтрации в пласте по мере удаления от призабойной зоны в соответствии с законом радиальной фильтрации, кажущаяся вязкость раствора и его фактор сопротивления уже в нескольких десятках метров от скважины снижается примерно на 50% достигая показателей характерных для воды. Учитывая деструкцию полимера при нагревании, которая добавляется к механической деструкции, а также биологическую деструкцию в пористой среде, это снижение эффективности полимерного раствора может достигать 80-100% в течении первых 6 месяцев.

Таким образом, осуществление термополимерного воздействия вряд ли может быть более эффективным, чем обычное полимерное. Единственный положительный эффект от этой технологии-отсутствие охлаждения пласта, нагнетаемой холодной водой.