Инфракрасный фильтр своими руками. За гранью видимого

Не знаю как вам, а мне всегда было интересно: как выглядел бы мир, если бы цветовые каналы RGB в глазу человека были чувствительны к другому диапазону длин волн? Порывшись по сусекам, я обнаружил инфракрасные фонарики (850 и 940нм), комплект ИК фильтров (680-1050нм), черно-белую цифровую камеру (без фильтров вообще), 3 объектива (4мм, 6мм и 50мм) расчитанные на фотография в ИК свете. Что-ж, попробуем посмотреть.

На тему ИК фотографии с удалением ИК фильтра на хабре уже писали - на этот раз у нас будет больше возможностей. Также фотографии с другими длинами волн в каналах RGB (чаще всего с захватом ИК области) - можно увидеть в постах с Марса и о космосе в целом.


Это фонарики с ИК диодами: 2 левых на 850нм, правый - на 940нм. Глаз видит слабое свечение на 840нм, правый - только в полной темноте. Для ИК камеры они ослепительны. Глаз похоже сохраняет микроскопическую чувствительность к ближнему ИК + излучение светодиода идет с меньшей интенсивностью и на более коротких (=более видимых) длинах волн. Естественно, с мощными ИК светодиодами нужно быть аккуратным - при везении можно незаметно получить ожег сетчатки (как и от ИК лазеров) - спасает лишь то, что глаз не может излучение в точку сфокусировать.

Черно-белая 5-и мегапиксельная noname USB камера - на сенсоре Aptina Mt9p031. Долго тряс китайцев на тему черно-белых камер - и один продавец наконец нашел то, что мне было нужно. В камере нет никаких фильтров вообще - можно видеть от 350нм до ~1050нм.

Объективы: этот на 4мм, еще есть на 6 и 50мм. На 4 и 6мм - рассчитанные на работу в ИК диапазоне - без этого для ИК диапазона без перефокусировки снимки получались бы не в фокусе (пример будет ниже, с обычным фотоаппаратом и ИК излучением 940нм). Оказалось, байонет C (и CS с отличающимся на 5мм рабочим отрезком) - достался нам еще от 16мм кинокамер начала века. Объективы до сих пор активно производятся - но уже для систем видеонаблюдения, в том числе и известными компаниями вроде Tamron (объектив на 4мм как раз от них: 13FM04IR).

Фильтры: нашел опять у китайцев комплект ИК фильтров от 680 до 1050нм. Однако тест на пропускание ИК излучения дал неожиданные результаты - это похоже не полосовые фильтры (как я себе это представлял), а похоже разная «плотность» окраски - что изменяет минимальную длину волны пропускаемого света. Фильтры после 850нм оказались очень плотными, и требуют длинных выдержек. IR-Cut фильтр - наоборот, пропускает только видимый свет, понадобится нам при съемке денег.

Фильтры в видимом свете:

Фильтры в ИК: красный и зеленый каналы - в свете 940нм фонарика, синий - 850нм. IR-Cut фильтр - отражает ИК излучение, потому у него такой веселенький цвет.

Приступим к съемке

Панорама днем в ИК: красный канал - с фильтром на 1050нм, зеленый - 850нм, синий - 760нм. Видим, что деревья особенно хорошо отражают именно самый ближний ИК. Цветные облака и цветные пятна на земле - получились из-за движения облаков между кадрами. Отдельные кадры совмещались (если мог быть случайный сдвиг камеры) и сшивались в 1 цветную картинку в CCDStack2 - программа для обработки астрономических фотографий, где цветные снимки часто делают из нескольких кадров с различными фильтрами.

Панорама ночью: видно отличие по цвету разных источников света: «энергоэффективные» - синие, видны только в самом ближнем ИК. Лампы накаливания - белые, светят во всем диапазоне.

Книжная полка: практически все обычные объекты практически бесцветны в ИК. Либо черные, либо белые. Лишь некоторые краски имеют выраженный «синий» (коротковолновый ИК - 760нм) оттенок. ЖК экран игры «Ну погоди!» - в ИК диапазоне ничего не показывает (хотя работает на отражение).

Сотовый телефон с AMOLED экраном: совершенно ничего не видно на нем в ИК, равно как и синего индикаторного светодиода на подставке. На заднем фоне - на ЖК экране также ничего не видно. Синяя краска на билете метро прозрачна в ИК - и видна антенна для RFID чипа внутри билета.

На 400 градусах паяльник и фен - довольно ярко светятся:

Звезды

Известно, что небо голубое из-за Рэлеевского рассеяния - соответственно в ИК диапазоне оно имеет намного мЕньшую яркость. Возможно ли увидеть звезды вечером или даже днем на фоне неба?

Фотография первой звезды вечером обычным фотоаппаратом:

ИК камерой без фильтра:

Еще один пример первой звезды на фоне города:

Деньги

Первое, что приходит на ум для проверки подлинности денег - это УФ излучение. Однако купюры имеют массу спец.элементов, проявляющихся в ИК диапазоне, в том числе и видимых глазом. Об этом на хабре уже кратко писали - теперь посмотрим сами:

1000 рублей с фильтрами 760, 850 и 1050нм: лишь отдельные элементы напечатаны краской, поглощающей ИК излучение:

5000 рублей:

5000 рублей без фильтров, но с освещением разными длинами волн:
красный = 940нм, зеленый - 850нм, синий - 625нм (=красный свет):

Однако инфракрасные хитрости денег на этом не заканчиваются. На купюрах есть антистоксовские метки - при освещении ИК светом 940нм они светятся в видимом диапазоне. Фотография обычным фотоаппаратом - как видим, ИК свет немного проходит через встроенный IR-Cut фильтр - но т.к. объектив не оптимизирован под ИК - изображение в фокус не попадает. Инфракрасный свет выглядит светло-сиреневым потому, что RGB фильтры Байера - прозрачны для ИК .

Теперь, если добавить IR-Cut фильтр - мы увидим только светящиеся антистоксовские метки. Элемент выше «5000» - светится ярче всего, его видно даже при не ярком комнатном освещении и подсветке 4Вт 940нм диодом/фонариком. В этом элементе также красный люминофор - светится несколько секунд после облучения белым светом (или ИК->зеленого от антистоксовского люминофора этой же метки).

Элемент чуть правее «5000» - люминофор, светящийся зеленым некоторое время после облучения белым светом (он ИК излучения не требует).

Резюме

Деньги в ИК диапазоне оказались крайне хитрыми, и проверять их в полевых условиях можно не только УФ, но и ИК 940нм фонариком. Результаты съемки неба в ИК - рождают надежду на любительскую астрофотографию без выезда далеко за пределы города.

ИК фильтр своими руками.

Сэм Нойун придумал один очень интересный и эффективный (а самое главное, дешевый) способ изготовления ИК фильтра.
Для этого нам понадобятся указанные на фотографии материалы и инструменты: черный маркер, ножницы, засвеченная фотопленка, пластиковый рулон от старого мотка узкого скотча, кусок картона и изолента. Самое сложное - сделать адаптер для фильтра.
Берем старый пластиковый рулончик от скотча - желательно, чтобы он был по внутреннему диаметру больше внешнего диаметра объектива. Вырезаем из картона полоску, по ширине соответствующую рулончику, обматывает её на один виток вокруг рулончика и фиксируем изолентой по кругу, чтобы не разматывалась. Можно сделать пару витков картона - так будет прочнее. Дальше вырезаем кружок, по внешнему диаметру соответствующий внешнему диаметру большого кольца (из картона и изоленты), а по внутреннему - внутреннему диаметру рулончика из-под скотча. Вырезаем, приклеиваем его к картонному колечку, после чего все красим в черный цвет маркером. Рулончик очень хорошо входит во внешнее колечко и держится в нем. Вырезаем из засвеченной, черной части фотопленки два кружка диаметром равным или чуть меньшим внешнего диаметра рулончика из-под скотча, складываем их вместе, кладем внутрь внешнего колечка и фиксируем рулончиком.
Все, фильтр готов - надеваем его на фотоаппарат или видеокамеру (включив режим ночной съемки) и видим только смутные очертания объектов на черном фоне. Фантастика. Не поверите, но это именно то, к чему мы стремились. Теперь немного о том, как нужно снимать. Как вы уже поняли, пленка “гасит” практически всю видимую часть спектра, пропуская лишь ИК-лучи. От этого фотоаппарату трудно фокусироваться, так что желательно пользоваться ручным фокусом. Более того, от этого фотоаппарату и плохо видно, так что используйте штатив и самые низкие установки чувствительности (ISO 50, 64, 100 - у кого как). Кстати фотографии будут красными. Крутите баланс белого вручную или пользуйтесь raw и потом ковыряйтесь в конвертере. В любом случае, без фотошопа все равно не обойтись, так что на легкую работу не надейтесь. Ну и результат - естественно превзойдет все ожидания, так или иначе…


Самодельный фильтр и IR трансмиттер для запуска вспышек в фотостудии

Очень коротко о том, как самому изготовить запускающую инфракрасную лампу-вспышку за полчаса.

Инфракрасная лампа вспышка может понадобиться для синхронизации ведомых ламп-вспышек в тех случаях, когда обычную лампу вспышку со стороны фотографа использовать нежелательно, а так же в случае, когда невозможно отключить оценочный импульс из-за конструктивных особенностей фотокамеры.



ИК-трансмиттер из любой вспышки.

Лампу-вспышку (IR-transmitter) можно изготовить из любой бюджетной лампы вспышки с минимальной переделкой. Для этого достаточно закрепить перед рефлектором лампы вспышки инфракрасный (IR) фильтр.


В качестве материала для изготовления IR фильтра можно использовать тело CD диска черного цвета. Чтобы идентифицировать такой диск при покупке, нужно посмотреть через его край, не покрытый фольгой, на яркий свет. Диск должен пропускать слабый фиолетовый свет.



1. Резцом, которым обычно режут листовые материалы, надрезаем CD диск со стороны дорожек примерно наполовину толщины.

2. Разламываем диск пополам, при этом край фольги отслаивается.

3. Подцепляем край фольги остро отточенным скальпелем и удаляем её.


Из полученного материла нужно изготовить, под размер имеющейся вспышки, две заготовки и склеить их вместе, чтобы в результате получить двухслойный фильтр.

На фотографии справа изображён край резца. Подобным резаком удобно сделать надрез. Резак можно изготовить из любого пришедшего в негодность инструмента, например, обломка ножовочного полотна.

Для того чтобы переделанная лампа-вспышка быстрее заряжалась, можно уменьшить ёмкость накопительного конденсатора до 10 - 30 микрофарад. Для энергии в 1 Джоуль требуется конденсатор емкостью около 20 микрофарад.

Подробнее о подключении произвольных вспышек к цифровым камерам можно прочесть

ИК-трансмиттер из лампы-вспышки встроенной в камеру.

Также, можно преобразовать в IR-трансмиттер встроенную вспышку любой камеры. Для этого достаточно закрепить перед рефлектором вспышки IR фильтр.

Проще всего прикрепить такой фильтр к встроенной лампе-вспышке зеркальной камеры.



1.Просовываем обыкновенную канцелярскую резинку под поднятую вспышку.

2-3. Просовываем одну образовавшуюся петлю в другую с задней стороны вспышки.

4-5. Раздвигаем эту же петлю и заводим её за передний край вспышки так, чтобы закрепить резинку на вспышке.

6. Вот, что должно получиться.

7. Вставляем фильтр между петельками резинки и излучателем вспышки.

8. Можно снимать.


Если вы не располагаете IR-синхронизатором типа «ФС-5-УБ» , который позволяет отсекать измерительные импульсы, то вам следует отключить их в вашей камере. Для этого нужно зайти в меню, переключить вспышку в мануальный режим и выбрать минимальную энергию вспышки.



Нам понадобится кусок не засвеченной, но проявленной обратимой (то есть, «слайдовой») фотоплёнки. Снимая цифровой фотокамерой через этот обрезок слайда, мы и получаем инфракрасные изображения. При этом фотоплёнка исполняет обязанности инфракрасного светофильтра.

Тот факт, что такая плёнка на вид абсолютно непрозрачна и имеет чёрный цвет, не должен нас настораживать. Сама по себе не засвеченная проявленная эмульсия задерживает излучение того диапазона спектра, к которому чувствительна фотоплёнка (то есть, весь видимый диапазон), пропуская всё остальное (то есть ультрафиолетовый и инфракрасный диапазоны). Но, несмотря на такую «демократию» эмульсии по отношению к невидимому диапазону, пластиковая подложка плёнки не в состоянии пропустить ультрафиолет. Поэтому комбинации «эмульсия/подложка» остаётся пропускать только инфракрасное излучение.

Матрица цифровой фотокамеры, как мы знаем, способна его зафиксировать, несмотря на усилия производителей в обратном направлении. Поскольку объектив фотоаппарата, особенно зеркального, имеет достаточно большой диаметр, рекомендуется пользоваться фотоплёнкой формата 120. Ширина такой плёнки составляет 6см, поэтому из неё можно вырезать кусок нужного размера, в отличие от узко-форматной плёнки. Такую плёнку вовсе необязательно покупать и тут же проявлять: готовые ненужные обрезки можно выпросить у оператора в любом пролабе. В качестве держателя такого «светофильтра», можно использовать всё, что есть под рукой, включая саму руку. Если наш самодельный ИК фильтр имеет выпукло-вогнутую форму то его необходимо выправить положив в середину увесистой книги на пару дней.

Какую плёнку выбрать?

Лучше пользоваться плёнкой Fujichrome Velvia 100F или Agfachrome RSX II 100 которая даёт ничуть не худший результат.

К недостаткам описанного метода можно отнести пониженный контраст, по сравнению с настоящими инфракрасными изображениями, снятыми через фильтр, и невысокую механическую прочность самодельного «фильтра».

Хотели бы вы узнать, как бы выглядел окружающий мир, если бы человеческий глаз воспринимал световые лучи не только, так называемого «видимого спектра», но и далеко за его пределами?

Одним из способов увидеть мир таким, каким его неспособен увидеть человеческий глаз, является фотосъемка в инфракрасном диапазоне.

ИК фильтр на объектив, необходимый элемент для инфракрасной съемки

Уже давно из сугубо технической, прикладной области, инфракрасная съемка вошла в мир художественной фотографии. При помощи съемки в ИК диапазоне, можно получить невероятные по красоте, «космические» пейзажи.

Вообще, данный вид съемки и последующей обработки, предмет для отдельной большой статьи или даже цикла статей. Но сегодня наша цель просто познакомиться с основами.

Итак, как получить инфракрасный снимок? Вариантов много. Раньше для этого использовалась специальная фотопленка. В специализированной цифровой технике используются особые матрицы.

Но можно попробовать сделать инфракрасный снимок и на простой цифровой фотоаппарат.

Оборудование для инфракрасной фотографии

По большому счету, оптика любой камеры пропускает лучи в ИК диапазоне. Но проблема в том, что матрицы современных камер оснащены специальными Hot-mirror фильтрами. И эти фильтры часто практически полностью отсекают ИК спектр.

Есть простой способ проверить, насколько ваша цифрозеркалка подходит к инфракрасной съемке. Возьмите обычный пульт дистанционного управления — от телевизора, музыкального центра и т.п. Все они работают на основе ИК лучей.

Поставьте свою камеру на штатив и в полной темноте сделайте насколько снимков, на разных выдержках и значениях диафрагмы. При этом держа пульт направленным в объектив и удерживая нажатой любую кнопку.

Если на сделанных кадрах появилась светлая точка, значит фильтр вашей камеры в достаточной степени пропускает ИК лучи и можно двигаться дальше. Если нет, то вариантов несколько. Поискать другую камеру или попробовать действовать дальше «на авось». Любопытно что часто слабым Hot Mirror оснащены относительно недорогие мыльницы, а не навороченные зеркалки.

Экспериментируйте с выдержкой и диафрагмой. Возможно для достижения цели вам потребуется очень длительная выдержка, чтобы ИК лучи пробились через фильтр.

Некоторые пускаются во все тяжкие, занимаясь тюнингом внутренностей своих цифрозеркалок под ИК съемку. Если вы решили пойти по этому пути, то для данной цели вполне можно недорого купить «донора» из числа БУ зеркалок. Суть тюнинга заключается в механическом удалении Low Pass фильтра, на который обычно механически напылен Hot Mirror фильтр.

В интернете, особенно англоязычном, много сообществ где есть подробные инструкции по разборке и удалению фильтров с разных моделей камер.

Механическое удаление фильтра после разборки камеры

Второй неотъемлемой частью является покупка светофильтра на объектив. Наиболее популярные и проверенные модели — Hoya R72 и Cokin 007. Но учитывая недешевую стоимость ИК фильтров (от 80-100$) имеет смысл сначала протестировать вашу камеру с этим фильтром, а не покупать вслепую, в интернет магазине.

Правда есть руководства по изготовлению IF фильтра из подручных средств. Но это отдельный разговор.

Интереснее всего в инфракрасном диапазоне выглядят пейзажи. Это связано с тем, что по сути, мы фиксируем способность предметов не излучать, а поглощать волны ИК волны. Например небо поглащает их в огромном количестве и на снимке будет уходить в черноту, зелень деревьев наоборот отражает лучи и на снимке будут выглядеть белыми, как покрытые инием в морозный день.

Учитывая что при применении ИК фильтров количество света попадающего на матрицу крайне мало, придется снимать на длительных выдержках а следовательно потребуется штатив.

Hoya R72 — один из самых популярных инфракрасных фильтров.

Кроме того, стоит перевести камеру в ручной режим фокусировки, так как автофокус может безбожно врать из за фильтра.
Затем стоит поэкспериментировать с различными параметрами экспозиции, анализируя полученный результат.

После того, как мы получили заветный кадр, следует заняться пост обработкой. Так как редкий кадр, сделанный в инфракрасном диапазоне будет шедевром без обработки.

Способов обработки существует великое множество. Рассмотрим один, самый простой.

Обработка инфракрасной фотографии

Существует огромное количество техник пост процессинга (обработки) инфракрасных снимков. Рассмотрим вкратце один из самых простых.

На выходе из камеры вы получите что то подобное.

Инфракрасное фото на выходе из камеры

Если съемка велась в RAW, имеет смысл изменить баланс белого, чтобы сделать зелень максимально приближенной к чистому белому цвету.

Затем, открываем снимок в Photoshop и корректируем уровни Levels. Лучше делать это для каждого канала отдельно (Red, Green, Blue).

Примерный вид Levels для необработанного снимка

Коррекция levels — смещаем ползунки слайдера к краям гистограммы

В итоге наш снимок станет более контрастным и приобретет визуальную «глубину».

Фото после изменения баланса белого и коррекции уровней

Следующий шаг — инверсия цвета.

Для этого открываем Channel Mixer (Image – Adjustments – Channel Mixer.)

Выбираем красный канал и для него Red убираем до 0, а Blue поднимаем до 100

корректируем канал Red

Затем открываем канал Blue и для него делаем наоборот. Red в 100% а Blue в 0%

Корректируем канал blue

Затем нажимаем Ok и наслаждаемся результатом. Для достижения лучшего эффекта можно еще поработать с инструментами насыщенности цветов — Adjustments – Hue/Saturation

Итоговый IF снимок

Примеры инфракрасных фотографий

Ну а для вдохновения, чтобы у вас появилось желание таки попробовать поснимать в данной технике, большая галерея инфракрасных снимков.




















































Нам понадобится кусок не засвеченной, но проявленной обратимой (то есть, «слайдовой») фотоплёнки. Снимая цифровой фотокамерой через этот обрезок слайда, мы и получаем инфракрасные изображения. При этом фотоплёнка исполняет обязанности инфракрасного светофильтра.

Тот факт, что такая плёнка на вид абсолютно непрозрачна и имеет чёрный цвет, не должен нас настораживать. Сама по себе не засвеченная проявленная эмульсия задерживает излучение того диапазона спектра, к которому чувствительна фотоплёнка (то есть, весь видимый диапазон), пропуская всё остальное (то есть ультрафиолетовый и инфракрасный диапазоны). Но, несмотря на такую «демократию» эмульсии по отношению к невидимому диапазону, пластиковая подложка плёнки не в состоянии пропустить ультрафиолет. Поэтому комбинации «эмульсия/подложка» остаётся пропускать только инфракрасное излучение.

Матрица цифровой фотокамеры, как мы знаем, способна его зафиксировать, несмотря на усилия производителей в обратном направлении. Поскольку объектив фотоаппарата, особенно зеркального, имеет достаточно большой диаметр, рекомендуется пользоваться фотоплёнкой формата 120. Ширина такой плёнки составляет 6см, поэтому из неё можно вырезать кусок нужного размера, в отличие от узко-форматной плёнки. Такую плёнку вовсе необязательно покупать и тут же проявлять: готовые ненужные обрезки можно выпросить у оператора в любом пролабе. В качестве держателя такого «светофильтра», можно использовать всё, что есть под рукой, включая саму руку. Если наш самодельный ИК фильтр имеет выпукло-вогнутую форму то его необходимо выправить положив в середину увесистой книги на пару дней.

Лучше пользоваться плёнкой Fujichrome Velvia 100F или Agfachrome RSX II 100 которая даёт ничуть не худший результат.

К недостаткам описанного метода можно отнести пониженный контраст, по сравнению с настоящими инфракрасными изображениями, снятыми через фильтр, и невысокую механическую прочность самодельного «фильтра».

Как работают ИК-камеры?

Инфракрасное излучение является одним из видов излучения, которое нельзя увидеть глазами человека. Его длина волны больше, чем у света в видимом спектре. Инфракрасная подсветка позволяет камере «видеть» даже в полной темноте. Это становится возможным с помощью лампы или диодов, излучающих инфракрасный свет определенной длины волны. Три длины волн 715 нм, 850 нм и 940 нм являются общими для инфракрасных осветителей. Человеческий глаз способен видеть до 780 нм и, следовательно, может слегка видеть осветители, которые используют 715 нм. Для истинного скрытого ночного наблюдения необходимо использовать ИК-прожекторы, работающие при 850 нм и 940 нм.

Свет лампы фильтруется таким образом, чтобы происходило излучение только заранее определенных длин волн 715 нм, 850 нм и 940 нм.

Инфракрасный фильтр своими руками для креативного освещения никон

Эти цифры являются отправными точками в отношении частоты излучаемых волн — они являются абсолютным нижним пределом спектра, используемым камерой. Если человек подойдет достаточно близко, то он сможет понять, что камера является инфракрасной, хотя не сможет видеть используемые длины волн.

Способность камеры для захвата изображений в зависимости от уровня освещенности измеряется в люксах. Чем ниже значение люкс, тем лучше камера может видеть в условиях низкой освещенности. Все ИК-камеры имеют значение 0 люкс, что означает, что они могут видеть в кромешной тьме. Цветные ИК-камеры переключаются в черно-белый режим для видеонаблюдения ночью, чтобы достичь максимальной чувствительности. Фотоэлемент внутри камеры отслеживает дневной свет и определяет, когда необходимо переключение. Следует различать ИК-камеры и камеры День/ночь. День/ночь камеры могут эффективно работать в условиях низкой освещенности, но они не оснащены светодиодами, что делает невозможным их работу в полной темноте, в отличие от камер с ИК-подсветкой.

При использовании ИК-камер для уличного применения, лучше применять готовые комплекты уличных видеокамер с кожухом или камеры с ИК-прожектором. Сочетание ИК камер для помещений с уличным кожухом может работать недостаточно хорошо, ведь ИК свет может отражаться от стекла кожуха. Кроме того, при покупке ИК-камеры или осветителя надо всегда смотреть на значение дальности луча. Установив в помещении ИК камеры с более широким диапазоном, чем размеры помещения, можно получить размытые изображения. Следует отметить, что ИК-камеры не могут видеть сквозь дым. Для того чтобы добиться этого, должна быть использована тепловизионная камера.

Перевод Хай-Тек Секьюрити. Источник: http://www.surveillance-video.com/ea-ir.html

Самодельный инфракрасный светофильтр

Думаю, что такое инфракрасная фотография, знает не каждый, а зря, это довольно-таки интересная штука. Можно сделать инфракрасный фильтр из фотопленки, но в этой статье речь пойдёт о том, как из CD диска сделать ИК фильтр. Сам CD диск должен быть темно-красного цвета, такие диски продают во многих магазинах. Что нам нужно в первую очередь — взять крышку от любой пластиковой бутылки, в моём случае это минералка, и вырезать отверстие как можно большего диаметра. Крышка от пластиковой бутылки хорошо подошла в качестве насадки на объектив.

Фотография №1


Далее вырезанное отверстие нужно очистить от заусениц и покрасить чёрной автокраской из баллончика или любой другой — лишь бы держалась.

Чтобы очистить диск от верхнего слоя, нужно ножом от середины до края провести линию, и под напором воды верхний слой быстро смоется. Затем из диска нужно вырезать три или два квадрата одинакового размера и склеить. Наш самодельный фильтр готов, осталось только его наклеить на заранее подготовленную крышку из пластиковой бутылки. Готово, надеваем фильтр на мыльницу и идём фотографировать.

Фотография №2


Фотографировать будем в режиме фотосъёмки «М », так как нам нужен доступ ко всем настройкам мыльницы. Желательно взять штатив, но так как я фотографировал летом в солнечные дни, света хватало, при чувствительности ISO 200 удавалось фотографировать пейзажи с рук, диафрагма была открыта, что снижало резкость снимка.

Фотография №3


При дополнительной обработке в Adobe Photoshop можно получить самые разные результаты: понизить шум, тонировать или покрасить фотографию как вашей душе угодно.

Фотография №4


На снимках видно что инфракрасный фильтр из CD диска недостаточно резкий, более того скорее он создаёт эффект монокля. Если посмотреть каналы снимка, то красный постоянно засвечен, а если и присутствует, то его резкость крайне низка, синий канал самый контрастный, зелёный не так, но изображение достаточно хорошо просматривается.

Фотография №5


Фотографии, сделанные с помощью этого фильтра, напоминают инфракрасные снимки: зелёная листва светлеет, синее небо и вода темнеет.

Фотография №6

А если ваша мыльница поддерживает формат RAW, изображение можно сделать намного привлекательнее, попробуйте, и я уверен, у вас получится не хуже! О сайте fotomtv.

Зачем мне нужна SplitCam?

Бесплатная программа для веб камеры SplitCam позволяет добавлять к видео красочные вебкам эффекты, которые добавят веселья вам и вашим друзьям! Кроме того SplitCam – это простой и удобный способ разделения видеопотока от вебкамеры.

Инфракрасная цифровая камера своими руками

С помощью SplitCam вы можете общаться в видеочате со всеми друзьями, раздавать видео на онлайн-сервисах и все это одновременно! Подробнее…

  • Красочные эффекты для веб камеры

    Добавляйте наши эффекты для веб камеры в ваше видео во время видеозвонков
    и получайте море положительных эмоций от общения с друзьями! Примеры прикольных эффектов программы SplitCam: искажение лица и замена лица другим объектом, кривое зеркало, подмена заднего плана…

  • � азделение видео потока и подключение нескольких приложений

    Со SplitCam вы можете подключить вебкамеру к нескольким приложениям сразу
    и не получить при этом ошибку с сообщением, что «веб камера уже используется».
    Поверьте, ваша вебкамера может больше!

  • � еалистичные 3D маски

    Простая программа для веб камеры SplitCam позволяет виртуально заменить вашу голову любым 3D объектом. 3D эффекты для вебкамеры выглядят особенно привлекательно. Это может быть, например, голова слона или другого животного, которая повторяет все движения вашей настоящей головы. Также вы можете предстать перед собеседником в 3D маске из популярного фильма, например, в маске Дарта Вейдера.

  • Поддержка всех популярных сервисов

    Skype, Windows Live Messenger, Yahoo Messenger, AOL AIM, ICQ, Camfrog, Gtalk, YouTube, ooVoo, Justin.tv, Ustream и другие…

  • Трансляция видео на популярных сервисах

    Отправляйте видео на Livestream, Ustream, Justin.tv, TinyChat и другие сервисы в несколько кликов. Бесплатная программа для вебкамеры SplitCam сделает ваши трансляции более яркими и гибкими.

  • Поддержка различных разрешений видео, в том числе HD

    Отправляйте видео с HD камеры без потери качества. Выбирайте любое из доступных разрешений: 320×180, 320×240, 400×225, 400×300, 512×384, 640×360, 640×480, 800×600, 960×540, 1024×768, 1280×720, 1280×960, 1400×1050, 1600×900, 1600×1200, 1920×1080, 1920×1440, 2048×1536

  • � азличные источники видео

    Со SplitCam вы можете распространять видео с вебкамеры, из видео файла, слайд шоу или рабочего стола (рабочего стола целиком или выбранной его части)!

  • ��спользование IP камеры как источника

    Подключитесь к любой IP камере и отправляйте видео с нее в любимые видео мессенджеры и видео сервисы.

  • Небольшие, но полезные видео функции

    Записывайте видео без специализированных программ и загружайте его на YouTube в несколько кликов непосредственно из окна SplitCam!

  • Увеличение/уменьшение видео (Zoom)

    В SplitCam вы можете увеличить и передавать только нужную часть видео. Увеличивать/уменьшать видео можно с помощью клавиатуры и мыши.

Кроме всем известных красок для малярных работ существуют и специальные виды красок. Они применяются для защиты штрих кода и блокировки инфракрасных лучей. Знания о них расширят наш кругозор и может даже пригодятся.

  • Краски для защиты штрих-кода (бар-кода). Предназначены для предохранения оригинального штрих-кода от фотокопирования.
  • IR-blocking — краски, блокирующие инфракрасные лучи. Предназначены для печати на прозрачных ПВХ-пленках, для производства прозрачных пластиковых карт. Эти краски, блокируют или отражают инфракрасный свет. Источники излучения: банковские автоматы или другие аналогичные считывающие устройства.

Краски для защиты штрих-кода (бар-кода)
Данные краски предназначены для предохранения оригинального штрих-кода от фотокопирования. В случае использования такой краски черного цвета оригинальный штрих-код всегда будет невидим и для человеческого зрения. Можно также нанести эту блокирующую краску под ламинационной пленкой, а затем напечатать оригинальный штрих-код на карте сверху. После ламинирования уже невозможно отделить верхний слой от основы, не повредив штрих-код. Все эти краски не содержат углеродов.

Стандартные цвета:

  • S 3374 - красная краска, блокирующая штрих-код, который можно считывать с помощью оптических считывающих устройств.
  • S 4500 - черно-голубая краска, блокирующая штрих-код, который можно считывать с помощью инфракрасных считывающих устройств.
  • S 4501 - черно-коричневая краска, блокирующая штрих-код, который можно считывать с помощью инфракрасных считывающих устройств.

Печать: Подходит для всех типов трафаретов, кроме самоклеющихся пленок Stenplex Amber и Solvent. Рекомендуется использовать моноволоконные сетки 77 Т-90 Т. При использовании сетки с ячейками 90Т кроющая способность краски составляет 35-35 кв.м/кг.

Закрепление:
Сушка занимает от 30 минут до 1 часа в зависимости от условий. Можно использовать струйную сушку.

Ламинирование: Этими красками можно печатать непосредственно поверх напечатанного штрих-кода или на ламинационной пленке, а затем заламинировать обычным способом.

Использование: Изготовление кредитных карточек и билетов, где требуется защита штрих-кода от фотокопирования.

Могут также поставляться краски, блокирующие штрих-код, для печати на полиэстровых пленках

IR-blocking

Эти краски представляют собой прозрачные краски, блокирующие или отражающие инфракрасный свет. Источники излучения: банковские автоматы или другие аналогичные считывающие устройства.

Стандартные цвета - прозрачный желтый и зеленый.

Инфракрасный фильтр своими руками из CD диска на мыльницу

Эти краски имеют разную отражающую способность. Они предназначены для печати на прозрачных ПВХ-пленках, для производства прозрачных пластиковых карт. Этими красками можно печатать, как на пленках-основах, так и на ламинационных пленках.

Стандартные цвета:

  • S 17699 — зеленый ИК-блокер с максимальной степенью поглощения 860-900 нм
  • S 18203 — желтый ИК-блокер с максимальной степенью поглощения 980 нм
    Обе эти краски соответствуют стандарту ISO при печати через сетку 90Т.
  • S21143 — высококонцентрированный ИК-блокер с максимальной степенью поглощения 980 нм
    Эта краска соответствуют стандарту ISO при печати через сетку 120Т.

Для получения других цветовых оттенков поверх данных красок можно напечатать другими прозрачными красками.

Печать:
Подходит для любого типа трафарета, кроме клейких пленок Stenplex Amber и Solvent. Рекомендуется использовать моноволоконную сетку № 90Т, при этом кроющая способность краски составляет 60 кв.м/кг.

Закрепление:
Сушка занимает от 30 минут до 1 часа в зависимости от условий сушки. Можно использовать струйную сушку.

Ламинирование:
Эти краски можно использовать для печати непосредственно на пленке- основе или на ламинате, затем ламинировать обычным способом.

Использование:
Изготовление прозрачных кредитных карт для считывания информации посредством инфракрасных считывающих устройств и для идентификации банковскими автоматами.

«Класс!ная физика» — на Youtube

Инфракрасное и ультрафиолетовое излучения.
Шкала электромагнитных волн

«Физика — 11 класс»

Инфракрасное излучение

Электромагнитное излучение с частотами в диапазоне от 3 10 11 до 3,75 10 14 Гц называется инфракрасным излучением .
Его испускает любое нагретое тело даже в том случае, когда оно не светится.
Например, батареи отопления в квартире испускают инфракрасные волны, вызывающие заметное нагревание окружающих тел.
Поэтому инфракрасные волны часто называют тепловыми.

Не воспринимаемые глазом инфракрасные волны имеют длины волн, превышающие длину волны красного света (длина волны λ = 780 нм - 1 мм).
Максимум энергии излучения электрической дуги и лампы накаливания приходится на инфракрасные лучи.

Инфракрасное излучение применяют для сушки лакокрасочных покрытий, овощей, фруктов и т. д.
Созданы приборы, в которых не видимое глазом инфракрасное изображение объекта преобразуется в видимое.
Изготовляются бинокли и оптические прицелы, позволяющие видеть в темноте.

Ультрафиолетовое излучение

Электромагнитное излучение с частотами в диапазоне от 8 10 14 до 3 10 16 Гц называется ультрафиолетовым излучением (длина волны λ = 10-380 нм).

Обнаружить ультрафиолетовое излучение можно с помощью экрана, покрытого люминесцирующим веществом.
Экран начинает светиться в той части, на которую падают лучи, лежащие за фиолетовой областью спектра.

Ультрафиолетовое излучение отличается высокой химической активностью.
Повышенную чувствительность к ультрафиолетовому излучению имеет фотоэмульсия.
В этом можно убедиться, спроецировав спектр в затемненном помещении на фотобумагу.
После проявления бумага почернеет за фиолетовым концом спектра сильнее, чем в области видимого спектра.

Ультрафиолетовые лучи не вызывают зрительных образов: они невидимы.
Но действие их на сетчатку глаза и кожу велико и разрушительно.
Ультрафиолетовое излучение Солнца недостаточно поглощается верхними слоями атмосферы.
Поэтому высоко в горах нельзя оставаться длительное время без одежды и без темных очков.
Стеклянные очки, прозрачные для видимого спектра, защищают глаза от ультрафиолетового излучения, так как стекло сильно поглощает ультрафиолетовые лучи.

Впрочем, в малых дозах ультрафиолетовые лучи оказывают целебное действие.
Умеренное пребывание на солнце полезно, особенно в юном возрасте: ультрафиолетовые лучи способствуют росту и укреплению организма.
Кроме прямого действия на ткани кожи (образование защитного пигмента - загара, витамина D 2), ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций в организме.

Ультрафиолетовые лучи оказывают также бактерицидное действие.
Они убивают болезнетворные бактерии и используются с этой целью в медицине.

Итак,
Нагретое тело испускает преимущественно инфракрасное излучение с длинами волн, превышающими длины волн видимого излучения.

Инфракрасный фильтр своими руками №2

Ультрафиолетовое излучение - более коротковолновое и обладает высокой химической активностью.

Шкала электромагнитных волн

Длина электромагнитных волн изменяется в широком диапазоне. Независимо от длины волны все электромагнитные волны обладают одинаковыми свойствами. Существенные различия наблюдаются при взаимодействии с веществом: коэффициенты поглощения и отражения зависят от длины волны.

Длина электромагнитных волн бывает самой различной: от 10 3 м (радиоволны) до 10 -10 м (рентгеновские лучи).
Свет составляет ничтожную часть широкого спектра электромагнитных волн.
При изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

На рисунке изображена шкала электромагнитных волн с указанием длин волн и частот различных излучений:

Принято выделять:
низкочастотное излучение,
радиоизлучение,
инфракрасные лучи,
видимый свет,
ультрафиолетовые лучи,
рентгеновские лучи,
γ-излучение
.

Принципиального различия между отдельными излучениями нет.
Все они представляют собой электромагнитные волны, порождаемые заряженными частицами.

Обнаруживаются электромагнитные волны в основном по их действию на заряженные частицы.
В вакууме электромагнитное излучение любой длины волны распространяется со скоростью 300 000 км/с.
Границы между отдельными областями шкалы излучений весьма условны.

Излучения различных длин волн отличаются друг от друга по способам их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей.
В первую очередь это относится к рентгеновскому и у-излучениям, сильно поглощаемым атмосферой.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом.
Коротковолновые излучения (рентгеновское и особенно γ-лучи) поглощаются слабо.
Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений.

Коэффициент отражения электромагнитных волн также зависит от длины волны.

Поделиться